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Abstract
SLAOrchestrator is a new system designed to reduce
the price increases necessary to support performance
SLAs in cloud analytics systems. SLAOrchestrator is
designed for SLAs that guarantee per-query execution
times. Its core architecture consists of a double learning
loop that improves both SLAs and resource management
over time. It further utilizes an efficient combination of
elastic query scheduling and multi-tenant resource pro-
visioning algorithms to reduce the costs of performance
guarantees.

1 Introduction
A variety of shared-nothing systems for data analytics
are available as cloud services today, including Amazon
Elastic MapReduce (EMR) [5], Amazon Redshift [4],
Azure’s HDInsight [8], and Azure Data Lake Analyt-
ics [46]. When using those systems, users upload their
data to the cloud and issue queries on that data. Queries
can include relational operators and various user-defined
computations. A key challenge with these services, how-
ever, is that users must decide on a desired configuration:
how many service instances they want to pay for and how
powerful these instances should be.

The service configuration dramatically impacts
price [2] and performance [53], yet it is known to be
very difficult for users to select correctly [24]. Since
users do not know what configuration to purchase, one
approach is to offer performance-based service level
agreements (SLAs), where the system promises to meet
a given per-query latency or pay a penalty [41, 42].

Previous research has addressed the challenge of se-
lecting and enforcing SLAs in various ways. One line
of work assumes each tenant fits on a single server and
the challenge is to pack tenants on a restricted set of
servers [17, 34, 47], migrating tenants as needed [16], or-
dering queries for execution [12, 36], controlling admis-
sion [56, 42], and dispatching queries to servers [11, 37].
Other approaches assume the workload is known and re-
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Figure 1: A time-changing set of tenants executes
ad-hoc, analytical queries subject to performance
SLAs. Static resource allocation (EMR+SLAs), even
with a buffer (EMR+SLA+Buffer) leads to large cost
increases. Our improving SLAs (EMR+Improving
SLAs), especially with multi-tenancy and other opti-
mizations (SLAOrchestrator), bring costs down.

quire profile runs of queries, possibly restricted to pro-
cessing samples [53, 25, 18, 23]. Knowledge of the
workload and profile runs are reasonable assumptions in
a transaction-processing system with a fixed set of stored
procedures or in an analytics system that runs predefined
reports, but not for ad-hoc analytical workloads.

Another line of work focuses purely on enforcing
SLAs, assuming that SLAs are pre-defined [12, 11, 56].
SLA runtimes are artificially generated by, for exam-
ple, offering a performance guarantee 10x the true la-
tency [12], or by setting SLAs to be the performance of
past executions [29]. Without the right SLAs, the best
enforcement does not help: If the cloud provider over-
provisions the underlying system, the user has to bear
large costs, making the cloud provider less competitive
and encouraging the user to take her business elsewhere.
If the cloud provider underprovisions the underlying sys-
tem, the cloud provider has to pay penalties for missed
SLAs and thus loses money in the long term or must raise
prices to compensate.



In this paper, we address the problem of selecting and
enforcing SLAs for ad-hoc analytical queries over sys-
tems with multiple nodes. We develop SLAOrchestrator,
a system that enables a cloud provider to offer query-
level, performance SLAs for ad-hoc data analytics. In-
stead of relying on outside-generated SLAs [12, 11, 56],
SLAOrchestrator uses our PSLAManager from prior
work [41] to show the user what is possible and the price
tag associated with various options. SLAOrchestrator
generates, updates over time, and enforces SLAs in a way
that successfully brings down the cost, close to that of the
original service without SLAs.

Figure 1 shows our system in action given a set of ran-
dom tenants and EC2 prices.1 The x-axis shows time and
the y-axis shows the ratio of the service cost with SLAs
to the service cost without SLAs. When we add perfor-
mance SLAs to Amazon EMR and let the cloud provi-
sion the number of Virtual Machines (VMs) purchased
under the covers, costs grow dramatically either due
to SLA violations (EMR+SLAs) or over-provisioning
(EMR+SLAs+Buffer). Since guarantees depend on the
quality of the SLAs (measured by how close runtime
estimates are to the real runtimes on the purchased re-
sources), a key component of our approach is to improve
SLAs over time (EMR+Improving SLAs). We comple-
ment these improving SLAs with novel resource schedul-
ing and provisioning algorithms that minimize costs due
to over- or under-provisioning given a per-query SLA
(SLAOrchestrator).

SLAOrchestrator achieves its goal through three key
techniques that form the core contributions of this work.
First, SLAOrchestrator is designed on the core idea of
a double nested, learning loop. In the outer loop, ev-
ery time a tenant arrives, the system generates a perfor-
mance SLA given its current model of query execution
times. That model improves over time as more tenants
use the system. The SLA is in effect for the duration of
a query session, which is the time from the moment a
user purchases an SLA and issues their first query until
the user stops their data analysis and leaves the system.
In the inner loop, SLAOrchestrator continuously learns
from user workloads to improve query scheduling and
resource provisioning decisions and reduce costs during
query sessions. To drive this inner loop, we introduce a
new subsystem, that we call PerfEnforce. We present the
overall system architecture in Section 2.

Second, the PerfEnforce subsystem comprises a new
type of query scheduler. Unlike traditional schedulers,
which must arbitrate resource access and manage con-
tention, PerfEnforce’s scheduler operates in the context
of seemingly unbounded, elastic cloud resources. Its
goal is cost-effectiveness. It schedules queries in a man-

1We present the detailed experimental setup in Section 5 and the
exact SLA function in Section 3.1.
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Figure 2: SLAOrchestrator Architecture.
ner that minimizes over- and under-provisioning over-
heads. We develop and evaluate four variants of the
scheduler. The first variant is based on a PI controller.
Two variants model the problem as either a contextual or
non-contextual multi-armed bandit (MAB) [50]. The last
variant models the problem as an online learning prob-
lem. We present the query scheduler in Section 3.

Third, PerfEnforce also includes a new resource provi-
sioning component. We evaluate two variants of resource
provisioning: The first one strives to maintain a desired
resource utilization level. The other one observes ten-
ant query patterns and adjusts, accordingly, both the size
of the overall resource pool and the tuning parameters
of the query scheduler above. We present the resource
provisioning algorithms in Section 4.

We evaluate all techniques in Section 5 and discuss re-
lated work in Section 6. As Figure 1 shows, SLAOrches-
trator is able to reduce the costs associated with perfor-
mance guarantees, bringing those costs down close to the
basic service costs without guarantees.

2 System Architecture
Figure 2 shows SLAOrchestrator’s system architecture.
In this section, we present the details of that architecture
and SLAOrchestrator’s double nested learning loop.

2.1 System Components
SLAOrchestrator runs on top of a distributed, shared-
nothing, data management and analytics engine (Ana-
lytics Service) such as Spark [7] or Hive [26]. We use
our own Myria system [54] in the evaluation. Similar to
how tenants use Amazon EMR today, in SLAOrchestra-
tor, tenants upload their data to the service and analyze
it by issuing declarative queries. While modern systems
support complex queries, in this paper, we focus on re-
lational select-project-join queries as proof-of-concept.
However, there is nothing in our approach that precludes
more complex queries in principal. On top of the Ana-
lytics Service, SLAOrchestrator includes an SLA gener-
ator (PSLAManager [41]), which generates performance
SLAs for tenants. It also contains a dynamic scaling en-
gine (PerfEnforce), which drives the scheduling and pro-
visioning decisions for the underlying Analytics Service.

Analytics Service The back-end Analytics Service
executes on a dynamically resizable pool of virtual
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Figure 3: Runtimes Compared to Local Storage.

machines (VMs) running a resource manager such as
YARN [6]. PerfEnforce uses that engine in a multi-tenant
fashion and takes over all query scheduling decisions.
When a tenant executes a query, PerfEnforce’s query
scheduling algorithm determines the number of contain-
ers needed to run the query. It then allocates that number
of containers from the shared VM pool. Additionally,
PerfEnforce’s resource provisioning determines when to
grow or shrink the pool.

Analytics Service: Tenant Isolation As is common
in today’s big data systems, each parallel partition of
each query is a task that executes in a separate container.
Each query submitted by each tenant thus gets allocated
its own set of containers across the VMs. Furthermore,
our design partitions each tenant’s dataset and attaches
individual data partitions to containers, allowing for a
more isolated environment. In our experiments, we use
YARN containers. We schedule one container per VM
and thus use the terms interchangeably.

Analytics Service: Storage Once a user purchases an
SLA and before they can query their data, PerfEnforce
prepares their data by ingesting it into fast networked
storage, EBS volumes in our prototype. Figure 3 mo-
tivates our choice. The figure shows the median query
execution times across three runs for a variety of stor-
age options available on Amazon Web Services (AWS).
The y-axis shows the runtime relative to local storage.
Queries on the x-axis are sorted by local storage runtimes
in ascending order. The 70 queries shown are based on
a 100SF TPC-H SSB dataset on Myria [54] running on
32 i2.xlarge instances. As the figure shows, fast net-
worked storage, such as EBS-HighIOPS, provides per-
formance competitive with ephemeral storage, even on a
cold cache query, without the need to dynamically mi-
grate (or replicate) data fragments as VMs are added
and removed from the shared pool. This type of stor-
age is also affordable at less than 20% of the cost of a
VM. Because we seek dynamism and must support data-
intensive processing, fast networked storage is appealing.

During query execution, PerfEnforce attaches EBS
volumes to different VMs and detaches them as needed.
Each EBS volume holds a partition of the data, resulting
in a standard shared-nothing configuration. To avoid data
shuffling overheads due to scaling, PerfEnforce ingests

Figure 4: Example performance SLA provided by
PSLAManager with one service tier. Additional ser-
vice tiers would show similar query templates but
with different prices and performance thresholds.

multiple copies of each table. Each copy is partitioned
across a subset of EBS volumes such that, when a query
executes over a set of k containers, it uses the version
of its data spread across k EBS volumes. Due to space
constraints, we refer to our technical report for further
details on EBS data placement and its negligible impact
on performance [43].

SLA Generation To generate SLAs, we use a sys-
tem from our prior work, the PSLAManager [41], but
our system could work with others. PSLAManager takes
as input a database schema and statistics associated with
a database instance for a tenant (we use the term user
and tenant interchangeably). It generates a performance-
based SLA specific to a database instance as shown
in Figure 4 for the TPC-H Star Schema Benchmark [40].
Each tier has a fixed hourly price, which maps to a pre-
defined set of storage and compute resources, along with
sets of grouped queries where each group contains a time
threshold (“Runtime” in the figure). The time threshold
represents the performance guarantee for its respective
group of queries and corresponds to query time estimates
made by the SLA generator for the corresponding re-
source configuration. For each resource configuration,
we only consider varying the number of instances, but
consistently use a standard network, and EBS-HighIOPS
for storage across all configurations.

Each tier represents a performance summary for a
specific set of containers the service can use for ten-
ant queries, which we call a configuration. Tiers can
correspond to different types and numbers of contain-
ers, but we use a single type in our experiments. We
refer to all possible configurations that the system can
use to execute a query as the set configs. For exam-
ple, config = {2, 4, . . . , 64}, represents all even num-
bers of containers up to a maximum of 64. The system
shows tiers for a pre-defined subset of these configura-
tions. Later, it can schedule queries using the full set of
configurations. The price of each tier is at least the sum
of the hourly cost of the containers and network storage.

When a tenant purchases a performance SLA, she un-
knowingly purchases a configuration. The system starts
a query session for the tenant and the latter starts paying



the corresponding fixed hourly price. During the session,
the tenant issues queries. The queries get queued up and
execute one after the other, each one running in the entire
set of containers in the purchased configuration. As we
present in Section 3, PerfEnforce changes these alloca-
tions over time based on how fast they execute compared
with the initial SLA time.

2.2 Double Nested Learning
To drive the SLA generation, SLAOrchestrator maintains
a log of all past queries executed in the system. Ini-
tially, it executes queries from a 100GB dataset generated
by the Parallel Data Generation Framework(PDGF) [45].
The system runs queries on all configurations that it
will sell to populate the query log. With this informa-
tion, SLAOrchestrator builds a model of query execution
times. Each query is represented by a feature vector. Fea-
tures correspond to query plan properties including the
number of tables being joined, their sizes, the query cost
estimates from the query optimizer, the number of con-
tainers in the configuration, etc. SLAOrchestrator learns
a function from that feature vector to a query execution
time. In our work, we use a simple linear model as in
prior work [41, 53]. More complex models are possible
but we find a simple linear model to yield good results
for the select-project-join queries that we focus on in this
paper. With this model, predictions are made by learning
the coefficients (a weight vector, w) [9] given the query
features, xq: y(xq, w) =

∑D
d=1 wd · xqd .

With our previous PSLAManager work [41], we ob-
served that when a new tenant joins the system, estimates
for that tenant’s queries are likely to be inaccurate be-
cause the system has limited information about the tenant
data and queries (only statistics on base data). However,
as the tenant starts to execute queries, the system can
quickly learn the properties of the data and can special-
ize its model to that data. PerfEnforce uses this informa-
tion to dynamically adjust query scheduling and resource
provisioning decisions in the context of an existing SLA.
We call this the Inner Learning Loop. The effect of this
learning is also that the system updates the SLA that it
offers after each query session. This is SLAOrchestra-
tor’s Outer Learning Loop. The benefit of more precise
SLAs to tenants is the overall reduction in the service
cost. We use TensorFlow [1] to build this model and train
on the PDGF dataset. We generate 4000 queries (500 per
configuration) and record the features as well as runtimes
into the System Model.

Figure 2 shows in more detail how SLAOrchestrator
components interact with one another. Steps 1 through 6
denote the Inner Learning Loop: (1) Each tenant query,
q is issued through the service front-end. (2) PSLAMan-
ager determines q’s promised SLA time based on the ser-
vice tier that the user previously purchased. (3) PerfEn-

force uses query scheduling algorithms in conjunction
with the System Model to determine the number of con-
tainers to schedule for q. (4) PerfEnforce schedules q on
the Analytics Service. (5) The Analytics Service sends
metadata about the query to the Query Log. (6) The Sys-
tem Model parses the Query Log metadata and stores
features for the learning models. Once a tenant com-
pletes their session, SLAOrchestrator initiates the Outer
Learning Loop. In Step 7, the PSLAManager system
takes the information from the System Model and gener-
ates an improved SLA.

In the next two sections, we focus on the PerfEnforce
subsystem and its query scheduling (Section 3) and re-
source provisioning (Section 4) algorithms, which are
part of SLAOrchestrator’s inner learning loop.

3 Dynamic Query Scheduling
Every time a new tenant purchases a service tier, PerfEn-
force begins a query session for that tenant. The initial
state of the query session indicates the configuration (i.e.,
number of containers) that corresponds to the purchased
service tier. Many sessions are active at the same time
and PerfEnforce receives streams of queries from these
active tenants. Each query is associated with a possi-
bly imperfect SLA. That is, the query may run signifi-
cantly faster or slower than the SLA time if scheduled
on the purchased set of containers. PerfEnforce’s goal
is to determine how many containers to actually use for
each query with the goal to minimize operation costs. In
this section, we present PerfEnforce’s query scheduling
algorithm.

3.1 Optimization Function
Consider a cloud service operation interval T =
[tstart, tend]. The total operating cost to the cloud dur-
ing that interval is the cost of the resources used for the
service and the cost associated with SLA violations for
tenants active during that interval. Thus, PerfEnforce’s
goal is to minimize the following cost function :

cost(T ) = costR(T ) +
∑

u∈U(T )

(penalty(u)) (1)

where U(T ) is the set of all tenants active during time
interval, T , and costR(T ), is given by:

costR(T ) =
tend−1∑
t=tstart

costt(resources) (2)

where costt(resources) represents the cost of re-
sources for time interval [t, t+ 1], which depends on the
size and the price of individual compute instances.

The SLA penalty, penalty(u), is the amount of money
to refund to user u in case there are any SLA violations.
In this paper, we use the following formulation:

S
( 1

|Wu|
∑

q∈Wu

max(0,
treal(q)− tsla(q)

tsla(q)
)
)
∗ α ∗ pu (3)

whereWu is the sequence of queries executed by user
u, treal(q) is the real query execution time of query q,
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Figure 5: Examples of Distributions of Query Perfor-
mance Ratios

tsla(q) is the SLA time of q, pu is the session price paid
by user u in the absence of SLA violations, and α is a
configurable parameter that we vary in our experiments
to adjust the cost of SLA penalties compared with con-
tainer resource costs. S is a step function that rounds up
and truncates values. This step function is inspired by
real SLAs in cloud services that incur penalties based on
availability outages [8, 49, 51].

3.2 Query Scheduling Algorithms
For each query q ∈ Wu and for each user u, PerfEn-
force’s query scheduling algorithm must determine the
number of containers from the shared pool to allocate to
the query. PerfEnforce begins with using the number of
containers that corresponds to the purchased service tier.
It observes the resulting query runtimes and dynamically
adjusts the number of containers for subsequent queries
by using a scaling algorithm. It runs a scaling algorithm
separately for each tenant.

To minimize resource costs, the scaling algorithm
should schedule queries on the smallest possible num-
ber of containers. To avoid SLA penalties, however, it
must schedule queries on sufficiently large numbers of
containers to ensure that the real query execution time,
treal(q), is below the SLA time, tsla(q). We define the
query performance ratio as treal(q)

tsla(q)
and the goal of the

query scheduling algorithm is thus to execute each query
in the configuration that yields a performance ratio of
1.0. In practice, if the query scheduling algorithm aims
for query performance ratios of X , it will yield a query
performance ratio distribution around X as illustrated in
Figure 5. To illustrate our point, we plot synthetic Gaus-
sians. Real distributions are noisier. Since we can ad-
just the mean of the distribution (a.k.a. setpoint), X , the
quality of the scheduling algorithm is determined by the
tightness of the distribution around X . In other words, if
the distribution is wide (large standard deviation σ), then
the system is either wasting resources for many queries
(Figure 5a) or causing a large number of SLA violations.
A good query scheduling algorithm should yield a tight
distribution as in Figure 5b).

3.2.1 Reactive Scaling Algorithms
A reactive algorithm observes errors between the real and
SLA runtimes and adjusts the number of containers ac-
cordingly for each subsequent query. We implement a
Proportional Integral (PI) controller and a Multi-Armed-

Bandit (MAB) as our reactive methods. Both of these
techniques have successfully been used in other resource
allocation contexts [31, 33, 35, 37].

A limitation of the these techniques is that the config-
uration size chosen for a new query depends only on the
rewards or errors of previous queries ignoring the fea-
tures of the current query. We use the reactive methods
as baseline.

Proportional Integral Control (PI). Feedback con-
trol [28] in general, and PI controllers in particular, are
commonly used to regulate a system in order to ensure
that it operates at a given reference point. With a PI con-
troller, at each time step, t, the controller produces an
actuator value u(t). In our scenario, this is the number
of containers to use for the current query. The actuator
value, causes the system to produce an output y(t+1) at
the next time step. We compute y(t) as the average query
performance ratio over some time window of queries w:
y(t) = 1

|w|
∑
q∈w

treal(qj)
tsla(qj)

where |w| is the number of
queries in w. The goal is for the output, y(t), to be equal
to some desired reference output r(t), 1.0 in our setting.

The error e(t) = y(t) − r(t) captures a percent error
between the current and desired average runtime ratios.
Since the number of containers to spin up and remove
given such a percent error depends on the configuration
size, we add that size to the error computation as follows:
e(t) = (y(t)− r(t))u(t).

The PI controller, chooses the next number of contain-
ers as a combination of the initial configuration size u(0),
the most recently observed error, e(t), and the sum of all
accumulated errors

∑t
x=0 e(x). kp and ki are tunable

controller parameters, which determine how strongly the
controller reacts to recent errors and how much it weighs
history: u(t+ 1) = u(0) +

∑t
x=0 kie(x) + kpe(t)

Multi-Armed Bandits (MAB). In a MAB problem,
the system must repeatedly choose among k different op-
tions, or arms. At each timestep t, the system makes a
decision by selecting one of k arms, at, and receives a re-
ward, rt [50]. In our setting, each arm is a configuration
from the set configs. The arm choice is the decision to
schedule the next query using a given configuration size.

The goal is to maximize the total reward across many
timesteps. In the bandit setting, the algorithm must learn
the reward distributions for different arms through a pro-
cess of trial and error [9]. At each timestep, the system
must thus choose to either select the arm with the high-
est estimated reward (exploitation) or try another arm
(exploration) in order to acquire more information and
maximizing the reward across all timesteps [50].

To help balance between exploration and exploitation,
we use a heuristic known as Thompson Sampling [10].
During initialization, we define priors describing the ex-
pected reward of each arm. In our setting, we do not
make assumptions for each configuration. Instead, we



initialize the model for each arm using a uniform dis-
tribution, a noninformative prior. At timestep t, the sys-
tem constructs a posterior distribution for each arm based
on observed rewards, P (θ|a, r0, ..., rt−1), where θ rep-
resents the model parameters. For each query submitted,
the system samples from a candidate posterior distribu-
tion, defined as θ̂. Given that our prior is based on a
uniform distribution, we use a t-distribution to represent
our posterior. This t-distribution takes the reward mean,
variance, and count as input. As the system samples from
this posterior, we select the arm with the highest expected
reward, argmaxaE[P (rt|θ̂α)].

3.2.2 Proactive Scaling Algorithms
To address the limitations of the reactive techniques, we
consider two other scaling algorithms that both include
additional context, xq , for each incoming query, where
xq is a D−dimensional vector of features describing the
query, xq = (xq1 , ..., xqD )

T . To generate the feature vec-
tor, we use the query optimizer of the back-end query ex-
ecution engine and include information from the query
plans (e.g. number of columns, estimated costs, esti-
mated rows, estimated width, and the number of workers
scheduled to run the query).

Contextual Multi-Arm Bandit (CMAB). This ap-
proach is a variant of the multi-armed bandit problem
that includes contextual information. In a CMAB prob-
lem, at each timestep t, the algorithm receives a feature
vector, xq , as input, and uses it to determine the best arm,
at. CMAB does this by building a model for each con-
figuration that predicts the reward in that configuration
given a query feature vector. The expected value of the
reward for each arm and feature vector thus becomes:
q?(a) = E[rt|at, xq, θ].

Where θ represents the parameters of the generated
model [10]. As with MAB, PerfEnforce uses the Thom-
son sampling heuristic to balance exploration and ex-
ploitation. At each timestep t, PerfEnforce builds a pre-
dictive model for each state by computing a bootstrap
sample over all previous observations. PerfEnforce se-
lects the action that corresponds to the state with the best
predicted reward (i.e., reward closest to 1.0). In our pro-
totype implementation, we use the REPTree model from
Weka [22] as used in BanditDB [37]. For the first N
queries in a tenant’s session, we begin with a “warm-
up” phase where we execute queries a small number of
times in each configuration to initialize the observations
for that configuration. PerfEnforce runs the “warm-up”
session at the start of the query session, which could im-
pact performance for some queries.

Online Learning The CMAB technique described
above presents two practical challenges. First, it is dif-
ficult to determine the number of queries that should be
used to initialize the distributions for each state. At least
one query must be executed in each state, which can

be either unnecessarily expensive or undesirably slow.
The overhead especially penalizes short query sessions
as early queries undergo larger amounts of exploration.
Second, the observations collected are independent for
each state. If one configuration suddenly results in
slower or faster runtimes, this knowledge does not prop-
agate to other states.

Because of the above limitations, we propose a differ-
ent algorithm for our setting. We build a single model
of query execution times with the configuration size as a
feature. As a user executes queries, we always schedule
those queries in configuration sizes expected to yield the
best performance ratio and use the resulting query exe-
cution times to update our global model.

As described in the previous section, SLAOrchestrator
maintains a model of query execution time that it uses
for SLA generation. The idea here is for PerfEnforce to
continuously update that model, during a tenant’s query
session, based on the measured query execution times.
To update the model, PerfEnforce uses stochastic gra-
dient descent. For each data point, it slowly updates the
weight vector based on the gradient of a loss function,E:
w(τ+1) = w(τ) − η∇E [9]. Where τ represents the nth
data point and η represents the learning rate. Importantly,
PerfEnforce maintains a separate model of query execu-
tion time for each dataset so as to specialize its model
to the properties of that dataset. If the underlying data
significantly changes, the model could take time to ad-
just to changes, depending on the learning rate. Since we
primarily focus on analytic sessions, we do not evaluate
how this model adapts to updates. Training this model is
relatively cheap, taking approximately 2.38s for a single
epoch. Each prediction takes ∼10ms.

Setpoint Adjustment With all algorithms above, Per-
fEnforce strives to schedule queries such that their per-
formance ratios form a tight distribution around a desired
setpoint. An important question is how to tune the value
of that setpoint. If the setpoint is 1.0 and the mean of the
distribution falls on that setpoint, 50% of all queries will
miss their SLA times. The setpoint can be lowered such
that more, perhaps 90% of all queries, meet their SLA
time. Lowering the setpoint, however, will increase the
number of containers used for those queries and will thus
raise resource costs. In SLAOrchestrator, we adjust the
setpoint dynamically. We do so at the same time as we
make cluster provisioning decisions as described next.

4 Dynamic Provisioning
With the above query scheduler, the total number of con-
tainers needed to service the active set of tenants varies
over time. To reduce operation costs, PerfEnforce in-
cludes a resource provisioning component that deter-
mines when to grow and shrink the shared pool of com-
pute resources. Provisioning is particularly challenging



as it can take time to spin up new virtual machines. We
observe that it takes approximately 12 seconds to spin up
a virtual machine with a pre-loaded image on Amazon.
We consider this start up time throughout our evaluation.

Utilization Provisioning: The most common ap-
proach to resource provisioning is to maintain a de-
sired resource utilization level. Typically, this means
adding (or removing) resources when CPU, I/O, network
and memory usage move beyond (or below) set thresh-
olds [3, 8, 21, 48].

We posit, however, that measuring resource utilization
levels directly is not the right approach for PerfEnforce
because tenants are allocated resource containers. As
such, some tenants might execute I/O intensive work-
loads while others may run CPU intensive workloads,
leading to very different resource utilization levels for
various containers. In general, high resource utilization
does not imply a higher demand for resources [14].

Instead of aiming for a given CPU or I/O utilization
goal, we aim for an average VM utilization target, Z.
The utilization of each machine is measured by the per-
centage of time it is actively running queries (wall clock
time). For our target Z, we aim for an average utiliza-
tion across all shared VMs, AvgUtilization.To deter-
mine the number of machines the system should provi-
sion to meet Z, we implement a PI controller where the
set point isZ. Besides wall clock time, we note that other
metrics for system state could be used as well. For exam-
ple, the system could target a desired percentage of idle
machines or a desired tenant query queue length.

Simulation-based Provisioning: For a more proac-
tive approach to provisioning, we propose to explicitly
consider tenant recent workloads rather than only mea-
sure resource utilization. Specifically, we propose to
build models of tenant workloads and estimate the small-
est number of shared resources to support these modeled
workloads. This approach should be more effective than
simply looking at utilization, since the latter is tightly
coupled with the specific set of executed queries and the
query scheduler’s resource allocation decisions, which
are themselves constrained by the amount of shared re-
sources. To estimate the best number of shared resources
to support tenant modeled workloads, we use simula-
tions. This approach is not new and has been recently
used in the “What-If” engine from Tempo [52], where
the goal is to simulate the performance of many config-
urations of the MapReduce Resource Manager. We aim
to understand how such a provisioning algorithm in com-
bination with a learning query scheduler can help make
profitable decisions in a multi-tenant service.

In this provisioning approach, we model each tenant,
u, with a tuple (Qu, λu), whereQu is a set of queries that
the tenant may issue and λu is the tenant’s average think
time between consecutive queries. PerfEnforce learns

0 2 4 6 8 10
Query Batch (50 queries per batch)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
el

at
iv

e 
R

M
S

E

T1 (10GB)
T2 (25GB)
T3 (50GB)
T4 (100GB)

Figure 6: SLA improvements across query sessions
both values from a recent window of each tenant’s query
session. Based on these models, PerfEnforce then gener-
ates random sessions for each active tenant. To generate
a random session, PerfEnforce samples queries from the
recent query workload and also samples the think time
based on a Poisson distribution. During these simula-
tions, we also evaluate the costs of dynamically shifting
the setpoint. In general, these simulations help PerfEn-
force discover whether setpoint adjustments are neces-
sary for active tenants or whether nodes should be added
or removed to further save on costs.

5 Evaluation
We run SLAOrchestrator and execute all queries on
Amazon EC2 using i2.xlarge (4 ECU, 30 GB Mem-
ory) instance types priced at $0.12/hr. We consider
eight types of query scheduling configurations, each with
a different number of compute instances: configs
= {4, 8, 12, 16, 20, 24, 28, 32}. For multi-tenant exper-
iments, we run simulations with up to thousands of
servers and use the query times measured on EC2. For
our underlying shared-nothing, database management
system, we use Myria [54]. Myria uses PostgreSQL as
its storage subsystem.

To generate each tenant’s query sequence,Wu, we al-
ternate between different patterns of queries. For exam-
ple, one tenant might run small, lightweight queries for a
majority of the session before switching to queries with
larger joins and higher latencies. Thus, for some ran-
dom number of queries, k, we define the following three
discrete distributions: (1) number of joins, (2) number
of projected attributes, and (3) selectivity factor. For
the next k queries, we sample from each of these dis-
tributions and generate a query that meets all the sam-
pled characteristics. Once k queries are generated, we
define new distributions for the next random interval of
queries. We use both uniform and skewed (zipfian) distri-
butions. Unless stated otherwise, all the query workloads
throughout the evaluation are generated in this fashion.

5.1 Evaluation of SLA Predictions
A key tenet of SLAOrchestrator is the idea that the sys-
tem should update SLAs because they rapidly improve
as a tenant queries a database. We validate this hy-
pothesis in this section. Figure 6 shows the error of



the SLA predictions for four tenants, each with a dif-
ferent, random star schema [45] and database instance:
T1 = 10GB, T2 = 25GB, T3 = 50GB, T4= 100GB.
We generate a set of SPJ queries with random selection
predicates for each tenant. As tenants execute queries,
SLAOrchestrator updates the query time model sepa-
rately for each database. After each query batch, PSLA-
Manager re-generates an updated SLA. As the figure
shows, in all cases, the RRMSEs (relative root mean
squared errors) between the real runtimes and the pre-
dicted SLA runtimes decreases rapidly after the first
batch and then improves more slowly. We compute the
error on a sample of queries generated by the PSLA-
Manager for the tenant SLA. We measure the RRMSE

as:
√

1
|W|

∑
q∈W( (treal(q)−tsla(q))

tsla(q)
)2. The prediction er-

rors observed before running an initial batch of queries
(Query Batch 0), are highly dependent on the similarity
between the tenant’s database and the synthetic database
used to train our offline base model. In our experiments,
while databases differ in their schemas and table sizes,
we find that table sizes have the greatest impact on pre-
diction errors. Our offline model is trained on a gener-
ated 100GB PDGF dataset. We observe a higher initial
RRMSE error (approx. 2.4-2.5) for tenants T1 and T2
with the smaller databases.

5.2 Evaluation of Query Schedulers
The goal of each query scheduler is to ensure a tight dis-
tribution (small σ) of query performance ratios around
a µ close to 1.0 (later in Section 5.4, we consider dy-
namic setpoint tuning). In this section, we evaluate how
the different scheduling algorithms perform in the face
of different tenant workloads. All tenant workloads are
based on the 100GB TPC-H SSB benchmark [40]. We
evaluate the algorithms using different-quality SLAs as
shown in Table 1, which could correspond, for example,
to different model qualities as shown in Section 5.1.

We first evaluate the PI-Control scheduling algorithm
on four different SLA types and, in each case, on 10 dif-
ferent, randomly generated, tenant query sessions. We
execute the PI controller on each tenant’s query session
independently and measure the resulting query perfor-
mance distribution for that tenant. We then compute the
average µ and σ across these 10 distributions and plot
them in the first row of Figure 7. The y-axis represents
the distance between µ and 1.0, while the x-axis displays
the standard deviation of the query performance distribu-
tions. Because the PI controller has three tunable param-
eters (kp, ki and w), each point in the figure corresponds
to one such parameter combination. For each graph, we
also plot the average distribution of an Oracle, which al-
ways selects the best configuration size for each query.
The best parameter combinations are those closest to the
Oracle. If any technique’s parameters result in a distri-

bution with a higher σ or a µ farther from 1.0, this error
impacts cost, which ultimately depends on the cost func-
tion. As the figure shows, for all SLAs, the PI-Control al-
gorithm results in average distributions that are far from
the average distribution of the Oracle. There are no best
set of parameters that work across all workloads.

In the second row of Figure 7, we show the aver-
age distributions for MAB, CMAB, and online learning
across the same set of SLA types and tenant query ses-
sions. Note, the ranges for the axes are much smaller for
these graphs compared to the PI-Controller, which shows
that these techniques result in average distributions much
closer to the Oracle. For both bandit techniques, we ex-
ecute each tenant’s query session 20 times due to their
variance when sampling. For online learning, we vary
the learning parameter, η. In the first 4 columns of the
figure, we omit the performance ratios for the first 20
queries for all scaling techniques, since the bandits re-
quire an initial “warm-up” phase, where they need to try
each configuration at least two times.

For the SG SLA, the bandit techniques result in av-
erage distributions nearly identical to the Oracle. Since
both techniques rely on learning a distribution of query
performance ratios per configuration, they quickly find
the optimal configuration during the warm-up phase and
select this configuration for a majority of the queries.
Since the online learning technique is directly predicting
the runtimes for each query, the prediction errors result in
average distributions that are slightly farther away from
the Oracle. For the PLJ SLA, all techniques perform sim-
ilarly as most of the runtimes are meet at configurations
that are close to the purchased tier. In contrast, online
learning outperforms both bandit-based methods for the
NLJ and Initial SLAs. The NLJ SLA underestimates run-
times, which requires the schedulers to accurately choose
across a wider set of configuration options. For these
more difficult cases, context is critical as the schedul-
ing algorithm must make different decisions for differ-
ent queries. There is no single best configuration. As
a result, CMAB and the online learning approach both
outperform the simpler MAB scheduler. Online learn-
ing further outperforms CMAB because this technique
is able to quickly learn the performance correlations be-
tween configurations, which is crucial for the initial SLA
as it requires scaling for each query.

The final column shows the average performance ra-
tio distributions when using the initial SLA and includ-
ing the queries in the warm-up period. As the figure
shows, the online learning technique significantly out-
perform the bandit-based methods because it has the ex-
tra benefit of starting to learn from the offline model and
learning more quickly because it learns a single model
for all configurations. These results show that the PI con-
troller is ill-suited to our problem and we do not consider



SLA Description

Small Gaussian Error
(SG SLA)

SLA assumes a good prediction model and tests sensitivity to small errors (or variance) in query times. Generated by
taking the real query execution times at the purchased tier and adding a small Gaussian error:
N = (σ = 0.1 ∗ treal(q), µ = 0).

Positive/Negative Gaussian
Errors for Large Joins
(PLJ/NLJ SLA)

We skew SLA runtimes for some query types. We introduce large positive/negative errors to the real runtimes on
queries with a large number of joins (> 3 joins) and with a runtime >100 seconds. We update the runtime to
treal(q) + |e| (or −|e|), where e is sampled from a Gaussian distribution,
N = (σ = 0.3 ∗ treal(q), µ = 0). For other queries, we still inject small errors as in SG SLA.

Initial SLA This is the least accurate SLA, where runtimes are generated by an initial offline-trained model.
Table 1: SLAs used in experiments.

Figure 7: Evaluation of PI-Controller, MAB, CMAB and online learning scheduling algorithms

MAB CMAB Online Learning Oracle
µ 1.1368 1.1244 1.0161 1.0015
σ 0.1680 0.0871 0.0522 0.0008

Table 2: Ratio distributions during slow down
it further.

We now evaluate how query scheduling algorithms
can adapt to changing conditions. Recall, the goal of
these query schedulers is to ensure a query performance
ratio distribution close to 1.0. We generate a query se-
quence by selecting one query and running it repeatedly
several times. Each time we run this query, we record the
query performance ratio. Once we reach the 250th itera-
tion, we increase the query’s runtime by 25% (essentially
slowing down the system) for the rest of the session, run-
ning up to 1000 iterations. Table 2 shows that the on-
line learning technique reacts the fastest to this change in
conditions, leading to an overall mean performance ra-
tio closest to 1.0. We omit additional experiments with
different changing workloads due to space constraints.

5.3 Evaluation of Provisioning Algorithms
We first evaluate each provisioning algorithm in com-
bination with the Oracle query scheduler to ensure that
query runtime penalties are not a side-effect of the query
scheduler’s mispredictions. We launch each multi-tenant
tenant session based on session parameters summarized
in Table 3.

We introduce up to 100 tenants in a session and

Notation Description
Uinit Initial number of tenants in the session
Vinit Initial number of virtual machines
λarrival Average time between new tenants
λthinktime Average tenant think time
λterminate Average tenant session duration
M Provisioning monitoring time interval

Table 3: Parameters of multi-tenant experiments

simulate a shared cluster with thousands of contain-
ers/VMs. We sample arrival times, think times, and
session durations from Poisson distributions defined by
their corresponding parameters λarrival , λthinktime and
λterminate. PerfEnforce always keeps at least a mini-
mum of 4 machines launched at all times, to ensure that
there are enough machines available to execute queries.
Each provisioning algorithm monitors the shared re-
sources and tenants forM minutes before adding or re-
moving VMs from the pool. Our step function S pro-
vides no service credit if the system misses the runtime
by 10%. For each additional 20% increment and given a
threshold from x% to y%, we increase the credit to y%.

As described in Section 2, each submitted query gets
allocated a set of containers. We schedule one container
(running a Myria process) per VM. For each query, the
system assigns the tenant’s EBS volumes to a set of VMs
in the pool. After the query completes, the volumes are
detached from the VMs, making them available to other
tenants. We find it takes 4 seconds to mount a volume to



Figure 8: Comparing utilization-based and simulation-based provi-
sioning in conjunction with an Oracle query scheduler. The hash pat-
tern represents the proportion of the cost due to CostR

Figure 9: Costs of query scheduling in
conjunction with provisioning

a VM. Detaching takes approximately 11 seconds. We
include these delays in the experiments.

Utilization and Simulation-based Provisioning We
compare the multi-tenant session costs when provision-
ing VMs using either the utilization-based or simulation-
based approaches. We launch 100 VMs with 10 ini-
tial tenants and set the provisioning monitoring time to
20min. Figure 8 shows the results and the other experi-
mental parameters. For different average utilizations, Z,
we show the results for the best parameter values Vkp
and Vki . The y-axis shows the cost per time unit, while
the x-axis shows the value of the α parameter. Recall
from Equation 3 that we define α as a tunable parameter
that amplifies the weight of the SLA penalty compared
to the resource cost. The hash pattern in each bar repre-
sents the proportion of the cost due to CostR, the cost
of resources. Other costs come from SLA violations.
Error bars show variance across 10 runs. As expected,
the utilization-based method requires tuning depending
on the α value. Simulation-based provisioning has the
double-benefit of avoiding any tuning and more cost ef-
fectively provisioning shared resources compared to the
utilization-based approach.

Combining Scheduling and Provisioning We now
evaluate the performance of simulation-based provision-
ing in conjunction with various query scheduling algo-
rithms on the initial SLA. In Figure 9, we vary alpha (x-
axis) and measure the total cost compared with an Oracle
query scheduler (y-axis). As a baseline, we also include
a naive query scheduler, static, which simply schedules
each query on the configuration initially purchased by
the user. We also include utilization-based provisioning
at Z = .25 (using online learning as the query sched-
uler). We still initialize the session with 10 tenants, but
we start with a larger pool of 320 VMs, allowing enough
room to have each initial tenant schedule queries on up to
32 containers. In this experiment, since we also include
CMAB, we extend the session times to 180 to ensure the

algorithm has more time to operate in steady state (be-
yond the warm-up phase).

Overall, simulation-based provisioning continues to
outperform the utilization-based approach even with a
less perfect scheduler. Even when penalties are high,
simulation-based provisioning reduces costs by 11%
and more for lower penalties. Additionally, the online
learning-based scheduler yields similar costs to the Or-
acle scheduler (a 4% overhead). As expected, it sig-
nificantly outperforms the static scheduler and CMAB
when SLA penalties are expensive, with 20% cost sav-
ings. CMAB does worse because it causes more SLA
violations. For small α, the CMAB approaches result
in costs lower than even the Oracle scheduler. This is
because the CMAB’s warm-up phase initially schedules
queries on all available configurations (even small con-
figurations), which then causes the simulation approach
to provision less resources. Throughout the session, re-
sources are not added back in due to the low α value.

5.4 Dynamic Setpoint Tuning

Finally, we evaluate the benefits of dynamic setpoints to-
gether with the relative benefits of the other optimiza-
tions. Figure 10a shows the results. In the figure, we
start with SLAOrchestrator as initially shown in Figure 1.
We then remove optimizations one at a time in order.
First, we remove the ability to use dynamic setpoints,
followed by removing SLA improvements, scheduling
and provisioning. We remove these optimizations to run
SLAOrchestrator as a simpler multi-tenant system. To
emphasize the differences between optimizations, we use
α = 2 and α = 3. In this experiment, we start the ses-
sion with 5 tenants and 80 VMs (ensuring 16 nodes per
tenant, the amount they have purchased). New tenants
arrive approximately every 5 minutes, and tenants finish
their session after 180 minutes. As seen in the figures,
removing each optimization increases the cost. This is
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Figure 10: Performance when disabling different
SLAOrchestrator optimizations

especially apparent for α = 3, where SLAOrchestrator
decreases the cost by up to 59% compared to the case
with no optimizations.

5.5 Evaluation Discussion

The SPJ query workloads we use throughout the eval-
uation allow us to demonstrate a proof of concept for
SLAOrchestrator. Incorporating more complex query
workloads (e.g., considering aggregates and subqueries),
would impact the online learning and CMAB techniques
as they would require more advanced models and more
extensive feature engineering than those considered in
this work. Second, for a more thorough provisioning
evaluation, running SLAOrchestrator against real tenant
traces would help to better understand how the system
would behave under more bursty workloads.

6 Related Work

Elastic Scaling for Performance Guarantees Perfor-
mance guarantees have been the focus of real-time
database systems [30], where the goal is to sched-
ule queries in a fixed-size cluster and minimize dead-
lines. Provisioning and admission control methods have
enabled OLAP and OLTP systems to make profitable
choices with respect to performance guarantees [12,
11, 56], possibly postponing or even simply rejecting
queries. Work by Das et. al [14], uses telemetry to
determine whether to scale up containers within a sin-
gle node, whereas our goal is to scale the number of
containers per query. Ernest [53], CherryPick [2], Mor-
pheus [29] and CloudScale [48] find good configura-
tions for analytical workloads, but require representa-

tive workloads or repeated tenant usage patterns. Sev-
eral systems have studied performance SLAs through
dynamic resource allocation, including feedback con-
trol [33], and TIRAMOLA [31] which use reinforcement
learning techniques. Others leverage decisions based
on resource utilization goals [13, 15, 19, 39, 51, 57].
Tempo [52] simulates the performance of many MapRe-
duce Resource Manager configurations to meet a global
system objective, but jobs can be preempted to allow
high priority tenants to finish first.

Multi-Tenant Workload Consolidation Related
work addresses bad tenant packings by either finding a
good initial placement strategy or dynamically migrat-
ing tenants [15, 17, 32, 34, 51, 55]. Finding a good ten-
ant placement strategy is not the focus of our work. In-
stead, we focus on algorithms that help determine when
to launch or turn off machines.

Query Runtime Prediction Previous work has re-
lied on techniques to find whether a query will miss a
deadline [56], build gray-box performance models [20],
use historical traces of workloads [18], use benchmarks
to profile resources [58], or run smaller samples of the
workload [53]. Herodotou et. al. [24], assumes a previ-
ously profiled workload to predict the runtime through-
out different sized clusters. Jalaparti et. al. [27] gen-
erates resource combinations given performance goals.
Instead of building an analytical model, we use a model
that does not require an extensive understanding of a sin-
gle system. We also focus on ad-hoc queries with no
prior profiles.

Provisioning In terms of provisioning, some rely on
machine learning techniques such as the hill-climbing
approach seen in Marcus et. al. [37], which allows ma-
chines to learn an optimal time to wait before they shut
down. Neural networks for dynamic allocation [38] or
dynamic provisioning [44] have also been used, but have
distinct goals. One focuses on allocating resources with
minimal use of electrical power while the other assumes
predictable workloads.

7 Conclusion
We presented SLAOrchestrator, a new system designed
to minimize the price of performance SLAs in cloud an-
alytics systems. SLAOrchestrator uses a double learn-
ing loop that improves SLAs and resource management
over time. To support the latter, the system also includes
an efficient combination of elastic query scheduling and
multi-tenant resource provisioning algorithms that work
toward minimizing service costs. Experiments demon-
strate that SLAOrchestrator dramatically reduces service
costs for a common type of per-query latency SLAs.
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[34] Z. Liu, H. Hacigümüs, H. J. Moon, Y. Chi, and W.-
P. Hsiung. PMAX: Tenant placement in multitenant
databases for profit maximization. In Proceedings
of the 16th International Conference on Extending
Database Technology, EDBT ’13, New York, NY,
USA, 2013. ACM.

[35] K. Lolos, I. Konstantinou, V. Kantere, and
N. Koziris. Adaptive state space partitioning
of markov decision processes for elastic resource
management. In 2017 IEEE 33rd International
Conference on Data Engineering (ICDE), pages
191–194, 2017.

[36] R. Marcus and O. Papaemmanouil. Wisedb: A
learning-based workload management advisor for
cloud databases. Proc. VLDB Endow., 9(10), June
2016.

[37] R. Marcus and O. Papaemmanouil. Releasing cloud
databases for the chains of performance prediction
models. In CIDR 2017, 8th Biennial Conference
on Innovative Data Systems Research, Chaminade,
CA, USA, January 8-11, 2017, Online Proceedings,
2017.

[38] D. Minarolli and B. Freisleben. Distributed re-
source allocation to virtual machines via artificial
neural networks. In 22nd Euromicro International
Conference on Parallel, Distributed, and Network-
Based Processing, pages 490–499, 2014.

[39] V. R. Narasayya, S. Das, M. Syamala, S. Chaud-
huri, F. Li, and H. Park. A demonstration of
SQLVM: performance isolation in multi-tenant re-
lational database-as-a-service. In Proceedings of
the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2013, New York,
NY, USA, June 22-27, 2013, pages 1077–1080,
2013.

[40] P. O’Neil, E. O’Neil, and X. Chen. Star
schema benchmark. http://www.cs.umb.
edu/˜poneil/StarSchemaB.PDF.

[41] J. Ortiz, V. T. de Almeida, and M. Balazinska.
Changing the face of database cloud services with
personalized service level agreements. In CIDR
2015, Seventh Biennial Conference on Innovative
Data Systems Research, Asilomar, CA, USA, Jan-
uary 4-7, 2015, Online Proceedings, 2015.

[42] O. Papaemmanouil. Supporting extensible perfor-
mance SLAs for cloud databases. In Proc. of the
28th ICDE Conf., pages 123–126, 2012.

http://hadoop.apache.org/hive/
http://hadoop.apache.org/hive/
http://www.cs.umb.edu/~poneil/StarSchemaB.PDF
http://www.cs.umb.edu/~poneil/StarSchemaB.PDF


[43] Perfenforce: A dynamic scaling engine
for analytics with performance guarantees.
http://myria.cs.washington.edu/
publications/perfenforce_tech_
report_2018.pdf.

[44] X. Qiu, M. Hedwig, and D. Neumann. SLA Based
Dynamic Provisioning of Cloud Resource in OLTP
Systems, pages 302–310. 2012.

[45] T. Rabl, M. Frank, H. M. Sergieh, and H. Kosch.
A data generator for cloud-scale benchmarking. In
TPCTC’10, pages 41–56.

[46] R. Ramakrishnan, B. Sridharan, J. R. Douceur,
P. Kasturi, B. Krishnamachari-Sampath, K. Kr-
ishnamoorthy, P. Li, M. Manu, S. Michaylov,
R. Ramos, N. Sharman, Z. Xu, Y. Barakat, C. Dou-
glas, R. Draves, S. S. Naidu, S. Shastry, A. Sikaria,
S. Sun, and R. Venkatesan. Azure Data Lake Store:
A hyperscale distributed file service for big data an-
alytics. In Proceedings of the 2017 ACM Interna-
tional Conference on Management of Data, SIG-
MOD ’17, pages 51–63, 2017.

[47] J. Rogers, O. Papaemmanouil, and U. Cetintemel.
A generic auto-provisioning framework for cloud
databases. In 2010 IEEE 26th International Con-
ference on Data Engineering Workshops (ICDEW
2010), pages 63–68, 2010.

[48] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes. Cloud-
Scale: elastic resource scaling for multi-tenant
cloud systems. In ACM Symposium on Cloud Com-
puting in conjunction with SOSP 2011, SOCC ’11,
Cascais, Portugal, October 26-28, 2011, page 5,
2011.

[49] Sla for azure cosmos db. https:
//azure.microsoft.com/en-us/
support/legal/sla/cosmos-db/v1_0/.

[50] R. S. Sutton and A. G. Barto. Reinforcement learn-
ing I: Introduction, 2016.

[51] R. Taft, W. Lang, J. Duggan, A. J. Elmore,
M. Stonebraker, and D. DeWitt. STeP: Scal-
able tenant placement for managing database-as-a-
service deployments. In Proceedings of the Seventh
ACM Symposium on Cloud Computing, SoCC ’16,
2016.

[52] Z. Tan and S. Babu. Tempo: Robust and self-
tuning resource management in multi-tenant paral-
lel databases. Proc. VLDB Endow., 9(10):720–731,
June 2016.

[53] S. Venkataraman, Z. Yang, M. Franklin, B. Recht,
and I. Stoica. Ernest: Efficient performance pre-
diction for large-scale advanced analytics. In 13th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 16), pages 363–378,
Santa Clara, CA, 2016. USENIX Association.

[54] J. Wang, T. Baker, M. Balazinska, D. Halperin,
B. Haynes, B. Howe, D. Hutchison, S. Jain,
R. Maas, P. Mehta, D. Moritz, B. Myers, J. Ortiz,
D. Suciu, A. Whitaker, and S. Xu. The Myria big
data management and analytics system and cloud
services. In CIDR 2017, 8th Biennial Conference
on Innovative Data Systems Research, 2017.

[55] P. Wong, Z. He, and E. Lo. Parallel analytics as a
service. In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data,
SIGMOD ’13, pages 25–36, 2013.

[56] P. Xiong et al. ActiveSLA: a profit-oriented admis-
sion control framework for database-as-a-service
providers. In Proc. of the Second SoCC Conf.,
page 15, 2011.

[57] P. Xiong et al. SmartSLA: Cost-sensitive man-
agement of virtualized resources for CPU-bound
database services. In IEEE Transactions on Par-
allel and Distributed Systems, pages 1441–1451,
2015.

[58] N. J. Yadwadkar, B. Hariharan, J. E. Gonzalez,
B. Smith, and R. H. Katz. Selecting the best vm
across multiple public clouds: A data-driven per-
formance modeling approach. In Proceedings of
the 2017 Symposium on Cloud Computing, SoCC
’17, pages 452–465, New York, NY, USA, 2017.
ACM.

http://myria.cs.washington.edu/publications/perfenforce_tech_report_2018.pdf
http://myria.cs.washington.edu/publications/perfenforce_tech_report_2018.pdf
http://myria.cs.washington.edu/publications/perfenforce_tech_report_2018.pdf
https://azure.microsoft.com/en-us/support/legal/sla/cosmos-db/v1_0/
https://azure.microsoft.com/en-us/support/legal/sla/cosmos-db/v1_0/
https://azure.microsoft.com/en-us/support/legal/sla/cosmos-db/v1_0/

	Introduction
	System Architecture
	System Components
	Double Nested Learning

	Dynamic Query Scheduling
	Optimization Function
	Query Scheduling Algorithms
	Reactive Scaling Algorithms
	Proactive Scaling Algorithms


	Dynamic Provisioning
	Evaluation
	Evaluation of SLA Predictions
	Evaluation of Query Schedulers
	Evaluation of Provisioning Algorithms
	Dynamic Setpoint Tuning
	Evaluation Discussion

	Related Work
	Conclusion

