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ABSTRACT
The availability of large data centers with tens of thousands
of servers has led to the popular adoption of massive paral-
lelism for data analysis on large datasets. Several query lan-
guages exist for running queries on massively parallel archi-
tectures, some based on the MapReduce infrastructure, oth-
ers using proprietary implementations. Motivated by this
trend, this paper analyzes the parallel complexity of con-
junctive queries. We propose a very simple model of parallel
computation that captures these architectures, in which the
complexity parameter is the number of parallel steps requir-
ing synchronization of all servers. We study the complexity
of conjunctive queries and give a complete characterization
of the queries which can be computed in one parallel step.
These form a strict subset of hierarchical queries, and in-
clude flat queries like R(x, y), S(x, z), T (x, v), U(x, w), tall
queries like R(x), S(x, y), T (x, y, z), U(x, y, z, w), and com-
binations thereof, which we call tall-flat queries. We de-
scribe an algorithm for computing in parallel any tall-flat
query, and prove that any query that is not tall-flat cannot
be computed in one step in this model. Finally, we present
extensions of our results to queries that are not tall-flat.

Categories and Subject Descriptors
H.2.4 [Systems]: Distributed Databases

General Terms
Algorithms, Theory

Keywords
Database Theory, Distributed Databases, Parallel Compu-
tation

1. INTRODUCTION
In this paper we study the parallel complexity of conjunc-

tive queries. Our motivation comes from the recent increase
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in the use of massive parallelism for performing data analy-
sis on very large datasets. In addition to traditional paral-
lel database systems, such as Teradata or Greenplum, new
query languages and implementations have been introduced
recently for the purpose of massively parallel data analytics:
the MapReduce architecture for parallelism [8], SCOPE [4],
DryadLINQ [25], Pig [10], Hive [22], Dremel [17]. Most of
the effort and the engineering work in these systems has been
focused on fault-tolerance, resource allocation, and schedul-
ing, and restricted to basic operations like filtering, group-
by, aggregation, and join. As these systems evolve towards
general-purpose data analytics languages, they need to op-
timize and execute in parallel general conjunctive queries.

The parallel complexity of conjunctive queries on today’s
parallel architectures is not well understood. The data com-
plexity of every relational query is in AC0 [16], and it is gen-
erally acknowledged that SQL is “embarrassingly parallel”.
Immerman [13] analyzed the parallel complexity of First Or-
der Logic on CRCW PRAM (Concurrent Read, Concurrent
Write Parallel Random Access Machine) [21] and showed
that the parallel time is equivalent to the number of times
one needs to iterate a First Order sentence; an immediate
corollary is that every relational query takes O(1) parallel
time in this model. But circuits and PRAMs are not accu-
rate models of parallel systems. Even in the 80’s and 90’s
researchers have proposed alternative models to capture par-
allelism. Valiant introduced the BSP model [23] and Culler
et al. further refined it into the LogP model [6]. Both view
the parallel computation as a sequence of relatively short
parallel computation steps, each followed by a global syn-
chronization barrier. The length of a parallel step is called
periodicity parameter, L, and most of the analysis of parallel
algorithms in these models consists of theoretical guarantees
that servers finish their tasks within the periodicity param-
eter (or else, the next step needs to be dedicated to the
unfinished step). Therefore, the models focus on the details
of the communication protocol, and trace meticulously the
network’s latency, overhead, and gap (in the LogP model).
These models no longer capture today’s parallel architec-
tures well.

Nowadays, massive parallelism is achieved on commodity
hardware interconnected by a high speed network. The com-
munication cost is less dependent on the low level protocol,
but is dominated by the amount of data being exchanged.
In addition, the granularity of a parallel step has increased,
since each server needs to process a large amount of data be-
fore synchronization, making each synchronization step even
more expensive.

The main bottleneck in today’s massively parallel com-
putations is the global synchronization steps of a computa-
tion [12]. Two factors make a global synchronization step
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expensive: data skew and stragglers. Data skew refers to the
fact that some servers end up processing much more data
than others. Theoretically, one addresses data skew by re-
quiring that each server is allocated only O(n/P ) of the total
data, where n is the number of data items and P the number
of servers. This guarantees that no server gets an excessive
load1. Stragglers are a new phenomenon, not encountered
in older parallel systems. A straggler is a server that takes
significantly longer time to execute its share of the computa-
tion than the others. This can be caused by a faulty disk, the
server being overloaded with other tasks, by server failure, or
by the algorithm itself. Stragglers occur in today’s systems
because the large number of servers (tens of thousands) and
the long processing times (often several hours) dramatically
increase the probability that some servers will straggle. All
systems to date, starting with the original MapReduce [8],
pay special attention to stragglers. They monitor slow re-
sponders, and, once a straggler is identified, its work is redis-
tributed to other servers. Despite these measures, stragglers
add a significant cost to each synchronization step, and the
way to mitigate that cost in a theoretical model is to reduce
the number of global synchronization steps.

We propose a simple parallel model of computation, called
the Massively Parallel, or MP model, to enable us to ana-
lyze the parallel complexity of conjunctive queries. In MP,
computation proceeds in a sequence of parallel steps, each
followed by global synchronization of all servers. We do not
impose any restriction on the time of a parallel step. In-
stead, we impose the restriction that the load at each server
is no more than O(n/P ) data items during the entire compu-
tation, where n is the total size of the input and the output,
and P is the number of servers. Each parallel step consists
of a broadcast phase (where a limited amount of data is
shared among servers, typically in order to detect skewed
elements), followed by a communication phase, followed by
a computation phase. The cost of an algorithm in the MP
model is given by the number of parallel steps: we ignore
the time of the computation phase and also, in this paper,
we ignore the total amount of data transferred during com-
munication. However, notice that the amount of data trans-
ferred is always O(n), because the P processors can receive
at most P · O(n/P ) data items during each communication
step; this is in contrast to Afrati and Ullman [1], who allow

a total amount of O(n
k
√

P k−1) data exchanged in one step
(see Section 7). Thus, we only count the number of syn-
chronization steps. For example, if Algorithm A computes
a query in two parallel steps, each taking time T , and Algo-
rithm B computes the same query in a single parallel step
of time T ′ = 2T , then both algorithms take time 2T , and
would be considered equivalent in a traditional model. But,
under MP, Algorithm B is better, since it uses one parallel
step instead of two.

In this paper we study the evaluation of conjunctive queries
in the MP model. We restrict our discussion to full con-
junctive queries (without projections). Our main result is
a complete characterization of queries computable in one
MP step; the most significant aspect of this result is that
not all queries are easily parallelizable, as older models of
parallelism suggest. The queries computable in one MP
step are the tall-flat queries. A flat query is one where
every two atoms share the same sets of variables, for ex-
ample q(x, y, z, u) = R(x, y), S(x, z), T (x, u) is flat because

1We assume that each of the n items takes about the same
time to process. This assumption may fail for jobs with user
defined functions.

any two atoms share {x}; in other words, a flat query is
a star join where all join conditions are on the same vari-
able(s). A tall query is one where the set of variables in
the atoms forms a linear chain, for example q(x, y, z, u) =
R(x), S(x, y), T (x, y, z), U(x, y, z, u); tall queries occur in data
warehouse schemas, e.g Country(co, ...), City(co, ci, . . .),
Store(co, ci, st, . . .). A tall-flat query consists of a tall part
followed by a flat part (formal definition in Section 3), and
we prove that a query can be evaluated in one MP step iff it
is tall-flat. For the “if” part of the proof, we give a concrete
algorithm that computes any tall-flat query in one parallel
step, while guaranteeing perfect load balance (which is a re-
quirement in the MP model), even if the data is skewed.
We give the algorithm in two stages: we describe the algo-
rithm separately for tall, and for flat queries in Section 4,
then combine them into a general algorithm in Section 5.
The simple case of a 2-way join q(x, y, z) = R(x, y), S(y, z)
can be computed by an alogorithm similar in spirit to the
skew join in Pig [10]; k-way flat queries with k ≥ 3 and tall
queries require non-trivial extensions. For the “only if” part
of the proof, we show in Section 6 that for any non tall-flat
query, any one-step parallel algorithm will be skewed, thus
violating the MP model.

Our results depend critically on the load balance require-
ment, which strictly limits the amount of data per processor
to O(n/P ), and, hence, limits the communication cost to
O(n). Afrati and Ullman [1] describe a simple algorithm
for computing the query RST (x, y) = R(x), S(x, y), T (y)
(which is not tall-flat) in one parallel step, by allowing each

server to store O(n/
√

P ) amount of data, and, thus, with

communication cost O(n
√

P ). In general, any conjunctive
query with k variables can be computed in one parallel step
if one allows the load per processor to increase to O(n/ k

√
P )

(and the communication cost to O(n
k
√

P k−1)).
Organization. We first discuss in Section 2 about re-

lated work in parallel and distributed database models. Then,
we describe the model and the main algorithmic techniques
in Section 3, and the main algorithms in Section 4. We prove
the main result in Section 5 and Section 6. Finally, we dis-
cuss some extensions in Section 7 and conclude in Section 8.

2. RELATED WORK
The recent success of the MapReduce framework [8] in

efficiently parallelizing computations has inspired theoreti-
cal research on new models of parallel computation, which
capture the characteristics and limitations of the new ar-
chitecture, while also considering the capabilities of modern
hardware and infrastructure.

Afrati and Ullman [1] describe a model of computation
where every query is executed in one parallel step and the
primary measure of complexity is communication. Our model
always restricts the communication to O(n), but needs mul-
tiple communication steps, hence this is our main complex-
ity metric. By contrast, in their work they allow a larger
amount of communication, typically O(n

k
√

P k−1), and there-
fore the main complexity metric is the total amount of com-
munication.

Another theoretical approach to analyzing MapReduce is
presented in [14]. In this paper, the authors allow only a lim-
ited amount of storage in each processor, and add random-
ization, in the sense of allowing false computations as well.
Their main measure of complexity is similar to ours: the
number of MapReduce steps; however, they do not examine
queries, but general algorithms, comparing their model to
the PRAM model.
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Measuring parallel complexity in terms of the the num-
ber of communication steps was also proposed by Heller-
stein [12], who introduced the notion of Coordination Com-
plexity. The author argues that both communication and
computation are cheap using today’s infrastructure; the bot-
tleneck in parallelizing queries lies in the coordination of
global barriers during computation.

Apart from recent approaches to modeling the MapRe-
duce framework, various parallel models have been exten-
sively studied, for example the widely used bulk-synchronous
parallel model [23] and the LogP model [6]. However, both
models do not seem to adequately capture the concerns of
today’s massively parallel computations.

The idea that we handle skewed elements in a special way
during computation is not a new one; in [24], the authors
develop and implement an algorithm similar to ours that
handles skewed join computation in shared-nothing architec-
tures. Nevertheless, they assume that they have knowledge
of the skewed elements and do not provide any theoretical
guarantees on their algorithm.

Grohe et al. [11] introduced the Finite Cursor Machines
model of computation, in which queries are evaluated in a
sequence of “streaming” steps: each relation can be sorted
at the beginning of the step, but afterwards can be read
a constant number of times using a constant amount of
memory, in a streaming fashion. They do not restrict to
full queries, but they do restrict to conjunctive queries in
the semi-join algebra in order to ensure that the output
is linear in the size of the input (this rules out cartesian
product queries like q(x, y) = R(x), S(y)). For example, a
query like q(x) = R(x, y), S(x, z), T (x, u) can be computed
in one step, by first sorting the relations on x, then merge-
joining the three streams. The authors prove that the query
q(x, y) = R(x), S(x, y), T (y) cannot be computed in one
streaming step in this model. A conjunctive query is called
hierarchical if, denoting at(x) the set of atoms that contain
the variable x, the family of sets {at(x) | x ∈ V ar(Q)} form
a hierarchy (formal definition in Subsection 3.1). Although
the authors [11] do not state this explicitly, it follows im-
mediately from their result that a conjunctive query in the
semi-join algebra can be evaluated in one step iff it is hier-
archical. Dalvi et al.[7] show that, over tuple-independent
probabilistic databases, queries that can be evaluated effi-
ciently are precisely the hierarchical queries 2. Thus, both
in the streaming and probabilistic data model, the tractable
queries have the property of being hierarchical. In our work
we consider full conjunctive queries, but do not restrict to
the semi-join algebra. Thus, we allow cartesian product
queries, and show that the queries computable in one pass
are the tall-flat queries: for example the cartesian product
query q(x, y) = R(x), S(y) is flat, and therefore computable
in one MP step. Yet, not every hierarchical query is tall-flat,
for example q(x, y) = R(x), S(x), T (y), and these cannot be
computed in one MP step (Section 6). When restricting to
queries that are both full and in the semi-join algebra of [11],
we prove that hierarchical queries coincide with tall queries
and tall-flat queries collapse to tall queries [15]. Thus, for
the intersection of the language considered in [11] and the
one in this paper, the class of “easy” queries coincides.

3. THE MODEL AND THE MAIN RESULT
We define here the Massively Parallel (MP) model of query

evaluation. We fix throughout this paper a domain, U ,

2This result applies only to conjunctive queries without self-
joins.

called universe. A relational database instance D contains
constants from U , and has a relational schema R = R, S, T, . . .
We consider in this paper only full conjunctive queries, i.e.
where all variables are head variables. Denote the problem
size to be the size of the input database plus the size of the
query’s answer, n = size(D) + size(Q) .

Let P be the number of parallel servers. Each server stores
two kinds of data: generic data (values from U) and numer-
ical data (integers). The data is stored in arrays, on disks or
in main memory. Generic values can be manipulated only
in three ways: they can be copied, they can be tested for
equality a = b, and they can be subjected to a hash function,
from a fixed set of hash functions h̄. Each hash function has
type h : Uk → [P ], where k is its arity. For example, an
algorithm may use three hash functions, h̄ = (h1, h2, h3),
where h1, h2 : U → [P ] and h3 : U3 → [P ]. Each hash
function is randomized at the beginning of the algorithm,
i.e. chosen randomly from a finite set3 H of a family of hash
functions 4.

Initially, all relations are already uniformly distributed
over the servers (so no additional communication is neces-
sary), and their sizes are known by all servers.

An algorithm in the MP model runs as follows. The in-
put is the database instance D. Each relation R is parti-
tioned into P fragments R1, R2, . . . , RP of equal size, and
distributed over the P servers; server s holds the fragments
Rs, Ss, Ts, . . . The initial load of each server is size(D)/P .
The algorithm proceeds in a number of parallel computation
steps, each consisting of three phases:

Broadcast Phase: The P servers exchange some data glob-
ally. This data is shared among all servers, and we call
it broadcast data, B. At the end of this phase each
server has a copy of B. We require the total amount
of communication in this phase to be O(nε), for some
0 < ε < 1; in particular, size(B) = O(nε/P ).

Communication Phase: Each server sends data to other
servers. There is no restriction imposed on how a
server distributes the data to the other servers; it could
send its entire data to a single server, distribute it uni-
formly among servers, or broadcast its entire data to
all servers (but see the skew-free requirement below).

Computation Phase: Each server performs some local
computation on its data. There is no restriction im-
posed on the time taken for the computation. At the
end of this phase the algorithm may stop and leave
the result in the local memory of the P servers, or
may continue with the next parallel step.

We allow local computation to be performed during all
three phases; in our model local computation is free. A par-
allel algorithm is a sequence of parallel computation steps,
and its cost is the number of parallel steps. Let ns de-
note the total number of tuples stored at sever s during
the entire execution of the algorithm. The algorithm is
called load balanced, or skew free, if, for sufficiently large n,
E[maxs ns] = O(n/P ), where the expectation is taken over
the random choices of the hash functions h̄ ∈ H. Formally:
3Strictly speaking, we need a separate family for each hash
function used: h1 ∈ H1, h2 ∈ H2, etc. To simplify things,
we use a single family and write h̄ ∈ H with some abuse.
4Although in this paper we allow randomization only
in the choice of hash functions (with the excep-
tion of Subsection 4.1), all the hardness results (apart
from Proposition 4.3, which we defer to the full version) eas-
ily extend to arbitrary use of randomization.
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Definition 3.1. An algorithm is load balanced if there
exists a constant factor c > 0 s.t. for all number of servers
P there exists an integer n0 such that size(D) = n ≥ n0,
implies Eh̄∈H[maxs=1,P ns] ≤ c · n/P .

We require every algorithm to be load balanced. This re-
quirement is a key element of the MP model. Without it,
any query could be computed in one step, because all servers
could send their data to server number 1, which computes
the query locally. It has two consequences. First, it ensures
linear speedup [9] (by doubling the number of servers P , the
load per server will be cut in half5) and constant scaleup (by
doubling both the size of the data n and the number of pro-
cessors P , the running time remains unchanged). Second,
it implies that the total amount of data exchanged during
each communication step is O(n) in expectation. Indeed,
let ns be the number of tuples received by server s = 1, P :
since E[ns] = O(n/P ), the total amount of data exchanged
is E[

P

s ns] = O(n).
Thus, the amount of communication is guaranteed to be

O(n). In most algorithms, this is also a lower bound, but in
some cases one can design algorithms with strictly less com-
munication. For example, consider the intersection query
q(x) = R(x), S(x); partitioned hash join has communication
cost n = |R| + |S| (Proposition 3.3). But if we know that
|R| � |S|, then we can use broadcast join: broadcast R to all
servers, then each server intersects R with its local fragment
of S. The communication cost is P · |R|, which may be much
less than n. In this paper, we do not distinguish between
these two algorithms, since both require one parallel step.

The MP model is related to, but not identical to a Map
Reduce (MR) job [8]. MR corresponds to one MP step:
there is no broadcast phase, the communication phase is the
map job followed by data reshuffling, and the computation
phase is the reduce job. However, to implement an MP al-
gorithm over MR one has to implement the broadcast phase
either as a separate, lightweight MR job, or by sampling the
data before it is partitioned into servers at the beginning of
the map job. As we show in Proposition 3.5, the broadcast
phase is necessary to ensure load balance even for the sim-
plest of the join algorithms, and this is why we include it in
the model. Using sampling in order to improve load balance
is a popular technique in practice, for example it is used in
skew join in Pig [10].

Finally, note that in Definition 3.1, n0 is allowed to de-
pend on P . In other words, once P is fixed, load balance
is expected only for n “large enough”. In some of our algo-
rithms we require P = O(nε), for some 0 < ε < 1.

3.1 Main Result
The main result in this paper is a complete characteri-

zation of queries that are computable in one MP step by
a load balanced algorithm. To describe this result we first
need some definitions.

Given a conjunctive query Q and a variable x, denote by
at(x) the set of atoms that contain x. A query is called
hierarchical if for any two variables x, y, one of the following
holds: at(x) ⊆ at(y) or at(x) ⊇ at(y) or at(x) ∩ at(y) = ∅.

A conjunctive query is called tall-flat if one can order
its variables x1, . . . , xk, y1, . . . , y� such that: (1) at(x1) ⊇
at(x2) ⊇ . . . ⊇ at(xk), (2) at(xk) ⊇ at(yi) for i = 1, . . . , �,
and (3) |at(yi)| = 1. Clearly, every tall-flat query is hierar-
chical. Furthermore, if l = 0 then we call it a tall query, and

5And, thus, the time of the computation phase will also be
halved, assuming that the computation time is linear in the
size of the data.

y1

x1 x2 x3 x4 y2

y3

Figure 1: The tall-flat query L. An arrow u → v
denotes that at(u) ⊆ at(v).

if k = 1 then we call it a flat query. For example the query

L(x1, x2, x3, x4, y1, y2, y3) : −
R1(x1), R2(x1, x2), R3(x1, x2, x3),

R4(x1, x2, x3, x4), S1(x1, x2, x3, x4, y1),

S2(x1, x2, x3, x4, y2), S3(x1, x2, x3, x4, y3)

is a tall-flat query (Figure 1). The main result we prove is:

Theorem 3.2. Every tall-flat conjunctive query can be
evaluated in one MP step by a load balanced algorithm. Con-
versely, if a query is not tall-flat, then every algorithm con-
sisting of one MP step is not load balanced.

3.2 Datalog Notation for MP Algorithms
Throughout the paper, we express algorithms using a sim-

ple extension to non-recursive datalog, which allows us to
specify the location where data is stored. For this purpose
we adopt the syntax from [2]. If R(x, y) is a relation (binary
in this case), then the notation R(@s,x,y) denotes the frag-
ment of the relation R which is stored at server s. Using this
notation, we can define computations and communication in
the following way:

• Local computation: R(@s,x,y):-S(@s,x,y),T(@s,x)
• Broadcast: R(@*,x):-S(@s,x),T(@s,x)

• Point-to-point communication: R(@h(x),x,y):-S(@s,x,y)

3.3 Examples
We illustrate our model by giving two simple algorithms,

for computing the intersection of two sets, and a semijoin.
The first query computes the intersection of two sets R, S,

Q(x) : −R(x), S(x). This query is both tall and flat, and
can be computed by the distributed hash-join Algorithm 1.

Algorithm 1: Intersection(R(x), S(x))

/* Communication Phase */

R2(@h(x), x) :- R(@s, x)

S2(@h(x), x) :- S(@s, x)

/* Computation Phase */

Q(@s, x) :- R2(@s, x), S2(@s, x)

In this algorithm, h is a hash function h : U → [P ]. Each
server s applies the hash function h to each tuple R(a) and
sends it to the destination server h(a); similarly for tuples
S(b). In the computation phase, the tuples placed in the
same server are joined. Clearly, this algorithm is correct,
and runs in one parallel step, having no broadcast phase.
We will prove next that it is load balanced.

No fixed hash function h can guarantee load balance, be-
cause there exists a worst case data instance such that all
its data values collude under h. Instead, we follow here the
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standard approach, and assume that h is a uniform fam-
ily6 of hash functions [18]. Thus, in general, any MP algo-
rithm starts by choosing randomly its hash functions from
H: once these choices h̄ ∈ H are made, we call the execution
of the algorithm a run. The load balance requirement can
be rephrased as follows: Eh̄∈H[maxs ns] = O(n/P ), where
the expectation is taken over all runs.

Proposition 3.3. Assuming n = Ω(P log P ), Algorithm 1
is load balanced, i.e. the expected maximum server load is
E[maxs ns] = O(n/P ).

Proof. Consider the classical balls in bins problem: n
balls are randomly thrown into P bins. If n = Ω(P log P ),
the expected maximum load of a bin is Θ(n/P ) [19]. This
immediately proves the claim: each of the n tuples in R and
S is a ball, and h places each tuple independently in one of
the P servers (= bins), because h is chosen from a uniform
family of hash functions, hence E[maxs ns] = Θ(n/P ).

Our second example illustrates the broadcast phase. Con-
sider the query Q(x, y) : −R(x), S(x, y): this is a semijoin,
and it is a tall query. A naive extension of the previous
algorithm would partition both R(x) and S(x, y) accord-
ing to a hash function h(x), but this may result in data
skew: for example, if all tuples S(x, y) have the same value
x = a, then they will be hashed to the same server h(a),
whose load increases to O(n). Here it is necessary to obtain
some information about the distribution of tuples in S, using
the broadcast phase. Algorithm 2 performs a load balanced
computation of the semijoin query.

Algorithm 2: Semi-join(R(x),S(x, y))

/* Broadcast Phase */

/* Compute skewed elements; τ = |S|/(P log P ) */

G(@s, x, count(*)) :- S(@s,x,y)

H(@s, x) :- G(@s,x,f), f > τ/P
B(@*, x) :- H(@s, x) /* Broadcast */

/* Communication Phase */

R2(@h(x), x) :- R(@s, x), not B(@s, x)

S(@h(x), x, y) :- S(@s, x, y), not B(@s, x)

R2(@*, x) :- R(@s, x), B(@s, x)

S(@h2(x,y), x) :- S(@s, x, y), B(@s, x)

/* Computation Phase */

Q(@s, x, y) :- R2(@s, x), S2(@s, x, y)

In general, for any relation S(x, . . .) and attribute x of S,
define the frequency fS,x(a) of a constant a to be the number
of elements in S that have a on the x position. Let τ > 0
be a value called a threshold. A value a is called (S, x, τ )-
skewed, or simply skewed, or frequent, if fS,x(a) ≥ τ ; we
denote FS,x,τ (x) the set of skewed elements. Notice that
|FS,x,τ | ≤ |S|/τ .

The semi-join Algorithm 2 starts by computing all τ -skewed
elements, for τ = |S|/(P log P ). This set cannot be effi-
ciently computed exactly, because S is distributed; instead
we compute a superset B. Each server s computes all el-
ements x whose local frequency is ≥ τ/P ; the count(*)

notation is from [5]. There are ≤ (|S|/P )/(τ/P ) = |S|/τ
locally skewed elements. These sets are broadcast, and each
server computes their union, B. The set B contains FS,x,τ ,

6The family H is called uniform on a set S = {x1, . . . , xk}
if h ∈ H maps S to k values that are uniformly random and
independent. Uniformity is strictly stronger than universal-
ity [3]. In all our algorithms, |S| = O(n).

and |B| ≤ P · |S|/τ ; thus the communication cost of the
broadcast phase is ≤ P 2 · |S|/τ = P 3 log P = O(nε) (we
show in Subsection 4.1 how to further improve this). Next,
the semi-join algorithm proceeds as follows. For all non-
skewed elements x, both R(x) and S(x, y) are sent to the
server h(x); for the skewed elements, S(x, y) is distributed
using a second hash function h2(x, y), while R(x) is broad-
cast to all servers. This is similar to skew join in Pig [10],
but computes the skewed elements differently.

Proposition 3.4. Assuming n = Ω(P 3 log P ), Algorithm 2
is load balanced.

The proof follows as a corollary of Theorem 4.4, which we
prove in the next section.

We now prove that, without a broadcast phase, no load-
balanced algorithm can compute the semi-join in one step.
This justifies including a broadcast phase in the MP model.

Proposition 3.5. If an algorithm for computing the semi-
join Q(x, y) : −R(x), S(x, y) has one single parallel step and
no broadcast phase, then it is skewed.

Proof. We start by revisiting how the data is parti-
tioned. In the MP model the input data is partitioned
jointly: each sever holds a fragment from each relation. But
in impossibility proofs we will assume that the database is
partitioned separately: each server holds a fragment from
only one relation: P · |R|/(|R| + |S|) severs hold fragments
of R, and P · |S|/(|R| + |S|) servers hold fragments of S.
Any impossibility result for the separate partition implies
an impossibility result for the joint partition, because any
load balanced algorithm A over the separate partition can be
simulated by a balanced algorithm A′ over the joint partition
as follows. Given a separately partitioned instance R, S, ex-
tend it to a joint partitioned instance R′, S′, by inserting new
R-tuples in the servers holding S, and inserting new S-tuples
in the servers holding R, such that |R′| = |S′| = |R| + |S|.
The new tuples are chosen s.t. they do not join with any
other tuples. Run A′ on R′, S′: the result is S′

�R′ = S�R.
Thus, w.l.o.g., we will assume a separate partition in all im-
possibility proofs.

Assume A is a load balanced algorithm computing the
query Q. Let c be the constant in Definition 3.1, let P ≥
64c2, and let n = n0, where n0 is given by Definition 3.1
(it may depend on P ). We will show that A does not com-
pute correctly Q on an instance of size 2n using P proces-
sors. To simplify the notations we assume that A uses a
single hash function h, of arity k: the extension to multiple
hash functions is straightforward. Fix two n-vectors X =
(x1, . . . , xn) and Y = (y1, . . . , yn) ∈ Un of distinct elements.

For each m = 1, n, denote D(m) = (R,S(m)) the instance

R = {x1, . . . , xn}, and S(m) = {(xm, y1), . . . , (xm, yn)}. For
any run h ∈ H, let Kh(R(xi)) and Kh(S(xi, yj)) ⊆ [P ] be
the set of servers that receive R(xi) or S(xi, yj) respectively.

Lemma 3.6. If A is load balanced, then for any X, Y ∈
Un, there exists an instance D(m) (constructed from X, Y, m
as explained above), a run h ∈ H, and an element yi ∈ Y ,
such that Kh(R(xm)) ∩ Kh(S(xm, yi)) = ∅.

Proof. Let ns(D
(m), h) be the load at server s for the

instance D(m) and the run h. Since size(D(m)) = 2n, by

Definition 3.1, Eh∈H(maxs ns(D
(m), h)) ≤ 2·c·n/P . Let d =

4·c. We say that h is balanced for D(m) if maxs(ns(D
(m), h)) ≤

2 · d · n/P , and we say that h is balanced if it is balanced

for some D(m). Denote by H(m) the set of runs balanced
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for D(m), and H(∗) =
S

m H(m). By Markov’s inequality,

|H(m)|/|H| ≥ 1 − c/d = 3/4, and also |H(∗)|/|H| ≥ 3/4:
thus, most runs are balanced.

Call an element xi good for run h if, on some input D(m),
|Kh(R(xi))| < P/(2 · d): “goodness” does not depend on

D(m), because the input is partitioned separately, and all
instances D(m) have the same R. We claim that there exists
m such that xm is good for some h ∈ H(m). The claim proves
the lemma: indeed, consider the run h on the instance D(m).
Each server in Kh(R(xm)) stores at most 2 · d · n/P tuples

(since h is balanced for D(m)); hence, together they hold
< P/(2 · d) × 2 · d · n/P = n tuples. This implies that at
least one of the n tuples S(xm, yi), i = 1, n is not sent to
any server in Kh(R(xm)).

To prove the claim, denote for each h ∈ H(∗):

Bh ={xi | |Kh(R(xi))| ≥ P/(2 · d)} (bad elements)

Gh ={xi | |Kh(R(xi))| < P/(2 · d)} (good elements)

Clearly, Bh ∪ Gh = {x1, . . . , xn}. Since h is balanced for

some D(m) we have |Bh| · P/(2 · d) ≤ 2 · d · n. Therefore:

|Gh| ≥(1 − 4d2

P
) × n ≥ 3/4 · n ∀h ∈ H(∗) (1)

The last inequality holds because P ≥ 64c2 = 16d2. We now
prove that there exists a set H′ ⊆ H(∗) such that:

T

h∈H′ Gh �= ∅ and |H′| ≥ 3/4 · |H(∗)| ≥ 9/16 · |H| (2)

For that, consider the {0, 1}-matrix E = (eih) of dimensions

n × |H(∗)|, where eih = 1 iff xi ∈ Gh. By Equation 1, every
column h has at least 3/4 of entries equal to 1; thus, at
least 3/4 of entries in the entire matrix are 1; thus, there
exists a row m with at least 3/4 of the entries 1. Then,
H′ = {h | emh = 1} satisfies Equation 2.

To prove the claim, we show that H(m) ∩ H′ �= ∅. This
follows from |H(m)| + |H′| ≥ 3/4 · |H| + 9/16 · |H| = 21/16 ·
|H|: the two sets combined have more elements than H and
therefore have a non-empty intersection.

Fix D = D(m) = (R,S(m)), and the run h given by the
lemma. We will show that the algorithm is incorrect on the
run h, by showing that it fails to output the tuple (xm, yi).
Servers �∈ Kh(S(xm, yi)) cannot output this tuple, since they
don’t receive yi and cannot fabricate a generic value in U .
Servers ∈ Kh(S(xm, yi)) don’t receive R(xm). To show that
they cannot output this tuple either, consider the execution
of the algorithm on a second instance D′ = (R′, S(m)) where
R′ is obtained from R by replacing the single tuple R(xm)
with R(x′

m), where x′
m �= xm: (x′

m, yi) is no longer an answer
to Q on D′. Servers holding input fragments of S will send
their data to the same destinations, since S is unchanged; in
particular, S(xm, yi) is sent to the same set Kh(S(xm, yi)).
We claim that, during the two execution of the algorithm, on
D and D′ respectively, the server holding R(xm) (in D) or
R(x′

m) (in D′) will obtain exactly the same hash values; in
particular, it will send its elements to exactly the same des-
tinations, hence Kh(R(x′

m))∩Kh(S(xm, yi)) = ∅. Thus, the
servers in Kh(S(xm, yi)) receive exactly the same elements
during the two executions, and will not be able to distin-
guish between D and D′, thus cannot determine whether to
output the tuple (xm, yi).

It remains to prove the claim. For X ∈ Un denote H(X)
the array consisting of all hash functions h ∈ H applied to
all values in X. One can view H as assigning a color to each
point in Un. The number of colors is finite, c: for example,
if all hash functions in H have type h : Uk → [P ], then

c = [P ]|H|·nk

. Call a set V̄ = V1 ×· · ·×Vn ⊆ Un a p-space if

|Vi| ≥ p, for i = 1, n. A p-space is unicolored if all its points
have the same color. We prove that there exists a unicolored
2-space {x1, x

′
1}×· · ·×{xn, x′

n}. This implies Corollary 3.8,
which proves the claim.

Lemma 3.7. Suppose all points in Un are colored with c
colors. Then, for every p > 0 there exists M > 0 such that
every M-space has a unicolored p-subspace. In particular, if
U is infinite, then Un has a unicolored 2-subspace.

Proof. We set M = fn(p), where f1(p) = (p− 1) · c + 1,

fn+1(p) = f
(f1(p))
n (p) (where f

(k)
n (p) = fn(· · · fn(p) · · · ), k

times). The proof is by induction on n. For n = 1, consider
a set V1 with f1(p) points: at least p have the same color.
Assuming the lemma is true for n, we prove it for n+1. Let
M = fn+1(p) and consider an (n + 1)-dimensional M -space
V̄ 0 ×Vn+1, where V̄ 0 = V1 ×· · ·×Vn. Let k = (p−1) · c+1.
Fix k distinct elements x1, . . . , xk ∈ Vn+1 (this is possible
since |Vn+1| ≥ M = fn+1(p) ≥ f1(p) = k). Denote pk = p,
pi−1 = fn(pi) for i = k, . . . , 1; thus, M = p0. For every
i = 1, k there exists an n-dimensional pi-space V̄ i such that
V̄ i × {xi} is unicolored, and V̄ i ⊆ V̄ i−1: indeed, V̄ 0 × {x1}
is an n-dimensional space, hence by induction on n has a
unicolored subspace V̄ 1 × {x1}; suppose V̄ i−1 × {xi−1} is
unicolored: since V̄ i−1×{xi} is an n-dimensional pi−1-space,
it has a unicolored pi-subspace V̄ i × {xi}. Thus, we obtain
k unicolored spaces, V̄ 1 ×{x1}, . . . , V̄ k ×{xk}, and at least
p of them have the same color: V̄ i1 ×{xi1}, . . ., V̄ ip ×{xip}.
Then V̄ ip × {xi1 , . . . , xip} is a unicolored p-space.

Corollary 3.8. There exist vectors X = (x1, . . . , xn)
and Y = (x′

1, . . . , x
′
n) such that for any m, the vectors X

and X ′ = (x1, . . . , x
′
m, . . . , xn) collude.

4. THREE BUILDING BLOCKS
In this section, we describe the building blocks for the

algorithm computing any tall-flat query in one MP step: we
give an algorithm for computing the frequent elements of
a relation, an algorithm for computing any flat query, and
an algorithm for computing any tall query. In Section 5 we
combine them to give a general algorithm for any tall-flat
query.

4.1 Computing High Frequency Elements
The distributed frequent elements problem is the follow-

ing: given a distributed relation R(x, . . . ) of size r = |R|,
and a threshold τ , compute a set F containing all skewed
elements FR,x,τ , and distribute F to all servers. We con-
sider algorithms that proceed in two steps: (a) compute and
broadcast a set B to all servers, and (b) compute a subset
F of B at each server s.t. F is a superset of FR,x,τ . We de-
fine two costs: the amortized communication cost, |B|, and
the excess cost, |F |. Our goal is to keep the amortized cost
O(nε/P ), becuase the total communication cost is P · |B|.
The excess is at least r/τ , because, in the worst case, there
are r/τ frequent elements FR,x,τ : our goal is to prevent it
from being much larger. We present here three algorithms
for the distributed frequent element problem.

The naive algorithm consists of the top three rules in
Algorithm 2. Here F = B, hence both amortized cost and
excess are ≤ P · r/τ .

The Deterministic Frequency, Algorithm 3, has essentially
the same amortized cost, but a smaller excess. It starts by
computing all elements whose local frequency is ≥ τ/(2P ),
and retains their local frequencies, then broadcasts these
elements: thus, the amortized communication cost is |B| ≤
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Algorithm 3: Deterministic Frequency(R, τ )

HS(@s,x,count(*)):- R(@s,x,...)

G(@s,x,f) :- HS(@s,x,f), f > τ/(2P )
B(@*,x,f,s) :- G(@s,x,f) /* Broadcast */
H(@s,x,sum(*)) :- B(@s,x,f,-)

F(@s,x) :- H(@s, x, f), f ≥ τ/2

2 ·P ·r/τ , twice that of the naive algorithm. Then, it retains
in F only those elements x whose total frequency exceeds
τ/2; therefore, the excess is |F | ≤ 2 · r/τ , a factor of P/2
smaller than the naive algorithm.

Algorithm 4: Frequency Sampling(R,τ )

T = c · r · log r/τ /* c is a constant */
ts ∼ B(r, T/(P · r)) /* binomial sample */
H(@s, x, ...) :- sampling(@s, R, ts)

G(@s, x, count(*)) :- H(@s, x, ...)

B(@*, x, s) :- H(@s, x, ...) /* Broadcast */
K(@s, x, count(*)) :- B(@s, x, -)

F(@s, x) :- K(@s, x, f), f ≥ c · τ · T/r

The Frequency Sampling, Algorithm 4, has both a smaller
amortized communication, and a smaller excess cost over the
naive algorithm. Denote T = c · r · log r/τ , where c > 0 is
some constant. The algorithm starts by computing a “coin-
flip” sample B of R, where each element of R is sampled
independently, without replacement, with probability T/r.
Thus, E[|B|] = T , and the amortized communication cost is
c · r · log r/τ in expectation, which is significantly lower than
P · r/τ when log r � P . To compute B distributively, each
server s generates a random number ts drawn from a bino-
mial distribution B(r, T/(P · r)) (thus, E[ts] = T/P ), then
samples ts elements without replacement from its local frag-
ment Rs, using the primitive function sampling(@s, R, ts).
Once B has been computed and broadcast, we retain in F
only those elements whose total frequency is ≥ c · τ · T

r
.

We prove in the appendix (Proposition A.1) that, with high
probability, the frequency of all elements in F is Ω(τ ), hence
the excess is, in expectation, O(r/τ ).

4.2 Flat Queries
We start with Algorithm 5, which computes the full join

Q(x, y, z) : −R(x, y), S(x, z). Similarly to the semijoin algo-
rithm, during the broadcast phase we compute the high fre-
quency elements in R and in S. We set frequency threshold
for R to τR =

p

r/(P log P ) and for S to τS =
p

s/(P log P ).
Using one of the distributed high frequency algorithms in
Subsection 4.1, we compute a set RF containing all frequent
elements FR,x,τR and a set SF containing all frequent ele-
ments FS,x,τS . Then we proceed similarly to the semijoin
algorithm: if x is frequent in R then we duplicate the S(x, z)
elements; otherwise, if it is frequent in S then we duplicate
the R(x, y) elements; otherwise we don’t duplicate, but hash
on x.

Theorem 4.1. Assuming |R|/ log2 |R| = Ω(P 3 log P ), and
similarly for S, the Join algorithm is load balanced and has
one MP step.

Proof. We will analyze each of the three cases of the
Algorithm 5 separately. For any value a, let7 N(a) = fR(a)+
fS(a)+fQ(a) be the number of tuples from R, S and Q that

7We abbreviate fR,x with fR, etc.

Algorithm 5: Join(R(x, y), S(y, z))

/* Broadcast Phase: compute RF, SF */

/* Communication Phase*/

/* CASE 1: R hashed, S duplicated */

HR(@h1(x,y),x,y) :- R(@s,x,y), RF(x)

DS(@*,x,z) :- S(@s,x,z), RF(x)

/* CASE 2: S hashed, R duplicated */

HS(@h2(x,z),x,z):- S(@s,x,z), SF(x), not RF(x)

DR(@*,x,y) :- R(@s,x,y), SF(x), not RF(x)

/* CASE 3: both R, S hashed */

TR(@h3(x),x,y):- R(@s,x,y), not SF(x), not RF(x)

TS(@h3(x),x,z):- S(@s,x,z), not SF(x), not RF(x)

/* Computation Phase */

Q(@s,x,y,z) :- HR(@s,x,y), DS(@s,x,z)

Q(@s,x,y,z) :- DR(@s,x,y), HS(@s,x,z)

Q(@s,x,y,z) :- TR(@s,x,y), TS(@s,x,z)

contain the element a. Moreover, let Ns(a) the number of
these tuples sent to server s. We extend these notations for
a set of elements V , that is, Ns(V ) =

P

a∈V Ns(a).
First, consider a frequent value a ∈ RF . Then, N(a) =

fR(a) · fS(a) + fR(a) + fS(a). Since the hashing we use is
uniform, using the balls in bins argument, the expected max-
imum number of tuples from R containing a in any server
is bounded by 2fR(a)/P (as long as fR(a) ≥ P log P , which
holds when r = Ω(P 3 log3 P ) ). In the case that fS(a) = 0,
we have N(a) = fR(a) and thus E[maxs Ns(a)] ≤ 2fR(a)/P .
Otherwise, fS(a) ≥ 1 and

E[max
s

Ns(a)] ≤ fS(a)+2· fR(a)

P
(fS(a)+1) ≤ 8· fR(a)fS(a)

P

The last inequality holds since 1 ≤ fS(a) and fR(a)/P > 1.
By combining the two cases for fS(a), we have that for some
constant c:

E[max
s

Ns(a)] ≤ c

P
· [fR(a)fS(a) + fR(a)]

Similarly for a frequent value a ∈ SF \ RF , it holds that

E[max
s

Ns(a)] ≤ c

P
· [fR(a)fS(a) + fS(a)]

Last, we consider the case of the non-frequent values Yf =
{a : ¬RF (a),¬SF (a)}. We can bound the load N(a) of a
value a ∈ Yf by observing that N(a) ≤ τR + τS + τR · τS ≤
4τR · τS = 4 · √r · s/(P log P ) ≤ 2 · (r + s)/(P log P ). In this
case, all tuples which contain a are sent to the same server.
Thus, we can associate each value a with a ball of size N(a)
which is thrown u.a.r. to a server. We showed that the
maximum size of such a ball is wmax = 2 · (r + s)/(P log P ).
Let W be the total size of the balls, i.e. W = N(Yf ) ≤ |Q|.

Now, we apply the lemma from [20]: the expected max-
imum load when we throw balls with maximum size wmax

and total size W into P bins is maximized when we con-
sider B = W/wmax balls of size wmax. If B ≤ P log P , then
the expected maximum number of balls on a server will be
Θ(log P ); then, E[maxs Ns(Yf )] = Θ(log P ) ·wmax = Θ((r+
s)/P ). In the case that B ≥ P log P , it follows from the balls

in bins that E[maxs Ns(Yf )] ≤
“

2
P
· W

wmax

”

· wmax = 2W
P

.
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Finally, we sum for all the cases and all values a.

E[max
s

ns] ≤
X

a∈RF

E[max
s

Ns(a)]+

X

a∈SF\RF

E[max
s

Ns(a)] + E[max
s

Ns(Yf )]

By substituting the bounds we have computed and sum-
ming, we conclude that the load is indeed balanced among

the servers, that is, E[maxs ns] = O
“

|R|+|S|+|Q|
P

”

.

Generalizing to k-way joins for k > 2 is non-trivial. We il-
lustrate the algorithm for k = 3, on the query Q(x, y, z, w) =
R(x, y), S(x, z), T (x,w). To see the difficulty, recall that,
for a single join, R(x, y), S(x, z), if x ∈ RF then all tuples
S(x, z) are replicated to all servers: the cost of replication
is justified by the size of the answer. But in the three-way
join, they may not be in the answer, namely when x does
not occur in T (x,w). Thus, we need a second round of
broadcast to compute the intersection of RF, SF, TF with
the x-values occurring in R,S, T . We sketch the main parts
of the algorithm.

Set the frequency threshold for R to τR = 3
p

r/P log P ;
similarly for S, T . The broadcast phase has two rounds:

Broadcast 1: Compute and broadcast the sets RF,SF ,TF ,
which contain all frequent elements in R,S, T respec-
tively (using any of the algorithms in Subsection 4.1).

Broadcast 2: Compute and broadcast the intersections. We
show this only for R (it works similarly for S, T ):
RHS(@s, x) :- RF(@s, x), S(@s,x,y)

RHT (@s, x) :- RF(@s, x), T(@s,x,z)

RGS(@*, x) :- RFS(@s,x) /* Broadcast */
RGT (@*, x) :- RFT (@s,x) /* Broadcast */
RF’(@s,x) :- RGS(@s, x), RGT (@s, x)

Informally, each server s computes RHS
s = RF ∩ Ss

and RF T
s = RF ∩ Ts; it then broadcasts these val-

ues. Last, each server computes the final set RF ′ =
`

S

s RF S
s

´ ∩ `

S

s RF T
s

´

.

The communication phase is a straightforward general-
ization of Algorithm 5. There are four cases: (1) x ∈ RF ′,
(2) x ∈ SF ′ \ RF ′, (3) x ∈ TF ′ \ (RF ′ ∪ SF ′) and (4)
x /∈ (RF ′ ∪ SF ′ ∪ TF ′). We give the formal description of
only the first case.

/* Case 1: R hashed, S, T replicated

HR(@h(x,y),x,y) :- R(@s,x,y), RF’(x)

HS(@*,x,z) :- S(@s,x,z), RF’(x)

HT(@*,x,w) :- T(@s,x,w), RF’(x)

...

Q(@s,x,y,z,w) :- HR(@s,x,y), HS(x,z), HT(x,w)

Proposition 4.2. The algorithm computing the 3-Join

is load balanced and runs in one MP step.

We give the proof in the appendix, using essentially the
same techniques as in the case of the single join. This algo-
rithm generalizes straightforwardly to arbitrary flat queries:
note that the algorithm continues to use only two rounds in
the broadcast phase.

We end this subsection by proving that two rounds are
necessary in the broadcast phase. The proof is included in
the appendix.

Proposition 4.3. Any MP algorithm that computes the
query Q′(x, y, z) : −R(x, y), S(x, z), T (x) using at most one
broadcast round is skewed.

N

x ∈ TF 1

x ∈ SF 1 x, y ∈ TF 2

x x, y, zx, y x, y

Y

Y YN N

Figure 2: The decision tree for the tall query Q.

4.3 Tall Queries
We describe here the algorithm for the tall query Q(x, y, z) :

−R(x), S(x, y), T (x, y, z). The generalization to arbitrary
tall queries is straightforward and omitted.

For the broadcast phase, we first set the thresholds τS =
s/P log P and τT = t/P log P . Using any algorithm in
Subsection 4.1, we compute the following sets:

• SF 1 ⊇ {x | fS(x) ≥ τS}
• TF 1 ⊇ {x | fT (x) ≥ τT }
• TF 2 ⊇ {x, y | fT (x, y) ≥ τT }

Next, each server constructs the decision tree of Figure 2.
Consider a server s and any tuple t belonging to one of its
fragments Rs, Ss, Ts. Depending on which of the relations t
belongs to, a subset of the variables x, y, z is bound. That
is, if t ∈ R then it binds x; if t ∈ S then it binds x, y; and if
t ∈ T then it binds x, y, z. Starting from the root, we follow
the decision tree until one of two things happens:

• We reach a node asking for a variable not bound by t,
e.g. if t ∈ R and we reach a node asking for x, y. In
this case, we broadcast t to all the servers.

• We reach a leaf of the tree. Then, we hash t according
to the hash function with parameters the variables of
the leaf node, that is, we send t either to h1(x) or to
h2(x, y) or to h3(x, y, z).

For example, consider a tuple S(a, b), such that a is fre-
quent in T and a, b is not frequent in T . Then, this tuple
will be sent to server h2(a, b). After distributing the tuples,
each server locally computes the join.

Theorem 4.4. For |S|, |T | large enough: |S|/ log |S| =
Ω(P 2 log P ) (similarly for T ), the algorithm for computing
the tall query Q is load balanced and has one MP step.

Proof. First, consider all the tuples that are broadcast
by the algorithm. R may broadcast at most P log P tuples
for frequent values in S and T . Moreover, S may broadcast
a tuple for a frequent value in T , which are at most P log P .
Hence, each server receives at most 3 · P log P = O(n/P )
such tuples, since n = Ω(P 2 log P ).

Thus, it suffices to measure the load caused by the tuples
which are hashed. We partition the tuples into equivalence
classes (balls), according to the values they are hashed on
(notice that it suffices to consider only input tuples, since
the output size is at most the input size). For example, ball
B(a) contains all tuples from R, S, T which are hashed only
to h1(a). Notice also that if a ∈ TF 1, then B(a) is empty.
The following properties hold for any ball:

1. Every tuple of a ball is sent to the same server.
2. Every ball is sent to a u.a.r. chosen server.
3. The maximum size wmax of a ball is (s + t)/(P log P ).
4. The total size of the balls is W ≤ |R| + |S| + |T |.

230



We only prove property (3), since the others are straight-
forward. Consider the case for a ball B(a). Any tuple from
S belonging to B(a) is hashed only on the x variable; hence,
by the structure of the decision tree, a ∈ SF 1, which implies
that fS(a) < τS; hence, there exist at most τS such tuples.
Similarly, we have at most τT tuples from T in B(a). Thus,
|B(a)| < 1 + τS + τT . For a B(a, b) ball, we have that
|B(a, b)| < 2 + τT (and for B(a, b, c) the size is constant).

Following from these properties, the expected maximum
load is maximized in the case of W/wmax balls with size
wmax. Using the same argument as in the proof of Theorem 4.1,

we obtain that E[maxs ns] = Θ( |R|+|S|+|T |
P

).

5. THE MAIN ALGORITHM
In this section, we show how the techniques presented in

the previous sections can be combined to build a load bal-
anced algorithm for any tall-flat query.

For ease of exposition, let us denote by x1:k the sequence
of variables or values x1, x2, . . . , xk. We will also assume
w.l.o.g. the following form for tall-flat queries: Q(x1:k, y1:�) =
R1(x1), . . . , Rk(x1:k), S1(x1:k, y1), . . . , S�(x1:k, y�). For sim-
plicity, we will also refer to S1, . . . , S� as Rk+1, . . . , Rk+�.

For the algorithm, we will assume that Ri, Si are large
enough: in particular, we will need that |Ri|/ log |Ri| =
Ω(P 2 log P ) and that |Si|/ log� |Si| = Ω(P l+1 log P ). We
also define the frequency thresholds τRi = |Ri|/P log P and

τSi = �
p|Si|/P log P .

In order to distribute the tuples in a load balanced way,
the algorithm considers two cases: (1) values which cause
a large load to the query result Q and (2) the rest of the
values. Intuitively, we use flat-query techniques to deal with
the first case and tall-query techniques for the second case.

Broadcast Phase

Broadcast 1: Using any of the algorithms in Subsection 4.1,
compute the sets

RF j
i ⊇ {x1:j | fRi(x1:j) ≥ τRi} (i = 1, k; j = 1, i)

SF j
i ⊇ {x1:j | fSi(x1:j) ≥ τSi} (i = 1, �; j = 1, k)

In particular, using Frequency Sampling, we can com-
pute these sets by sampling only once. One can easily
check that the communication is O(nε).

Broadcast 2: For every relation V �= Si, server s computes
SFi(V, s) = SF k

i ∩Vs, i.e. intersects SF k
i with its local

copy of V . These sets are then broadcast. Finally, each
server computes the sets SFi =

T

V �=Si

`

S

s SFi(V, s)
´

.

Communication Phase

1. For i = 1, . . . , �: for every x1:k ∈ SFi \ S

j<i SFj ,
send every tuple of Si containing x1:k to the server
h(x1:k, yi). Broadcast every tuple t ∈ Sj , j �= i con-
taining x1:k.

2. Consider a tuple x1:q, q ≤ k, which does not belong to
case (1). For any Si, all tuples with the same value
x1:k are hashed to the same server. In order to decide
where to hash (or broadcast) the tuple, we construct
a decision tree, which generalizes the one in Figure 2.
Initially, let i = k+� and j = 1 (root). At each step, we
check whether x1:j ∈ RF j

i : if this holds, we increment
j (right child), else we decrement i (left child). The
algorithm stops when either j > q, in which case we
broadcast x1:q, or when i = 0 (a leaf is reached) and
the tuple is hashed to h(x1:j).

Computation Phase

The query is locally computed at each server.

Theorem 5.1. The algorithm computes any tall-flat query
in a load balanced way and has one MP step.

Proof. We first analyze the load for the tuples that fall
into the first case of the communication phase. Let us con-
sider the case of the FOR loop where i = 1 (the same
argument can be applied for every i). Consider a value
x1:k ∈ SF1. The total load attributed to this value is
N(x1:k) =

Q�
i=1 fSi(x1:k) +

P

i=1,� fSi(x1:k). Since any tu-

ple from S1 containing x1:k is hashed on (x1:k, y1), using
the balls in bins argument, we have E[maxs Ns(x1:k)] ≤
P

i>1 fSi(x1:k)+(2fS1(x1:k)/P )·(1+
Q�

i=2 fSi(x1:k)). More-
over, notice that fSi(x1:k) ≥ 1 is guaranteed from the second
step of the broadcast phase and also fS1(x1:k) ≥ P . Thus,

E[max
s

Ns(x1:k)] ≤ 2k

P
·

�
Y

i=1

fSi(x1:k)

We next consider the values of the second case. In order
to compute the load from the tuples that are broadcast to all
servers, notice that we have O(P log P ) frequent values for
each x1:j in relation Ri, hence a total load of O(k2P log P )
for each server. As for relations Si, we have |Si|/τSi frequent
values for each x1:j in Si. Thus, each relation causes a load
of O(k ·|Si|/τSi) to each server from broadcasting tuples. As
long as |Si| ≥ P �+1 log P , this load is bounded by O(|Si|/P ).

Finally, let us also measure the load caused by the tuples
which are hashed. We partition the tuples into equivalence
classes (balls), according to the values they are hashed with.
Notice that every ball has the following properties: (1) every
tuple of a ball is sent to exactly one server, and (2) every
ball is sent to a u.a.r. chosen server.

Now, consider a ball B(x1:q), q ≤ k. We define the size
of the ball to include the size of the output. Consider any
tuple t from a relation Ri belonging to B(x1:q). Clearly,
for i ≤ q, each relation Ri sends at most one tuple to this
ball. For Ri, i > q, by the structure of the decision tree,
fRi(x1:q) < τRi and thus there exist at most τRi such tuples.
The same holds for any Si. Thus,

|B(x1:q)| ≤ q +
k

X

i=q+1

τRi +
�

X

i=1

τSi + |QB(x1:q)|

where QB(x1) denotes the tuples of Q produced by the tuples
in B(x1:q). Next, notice that

|QB(x1:q)| =
X

xq+1:k∈B(x1:q)

�
Y

i=1

fSi(x1:q, xq+1:k)

Since every tuple is hashed only on x1:q, it must hold that
P

xq+1:k∈B(x1:q) fSi(x1:q, xq+1:k) ≤ τSi . This implies that

|QB(x1:q)| is maximized when there exists a value x′
q+1:k such

that for every Si, fSi(x1:q, x
′
q+1:k) = τSi (and zero for all the

other values). Then, using the Arithmetic-Geometric means
inequality, we obtain that

|QB(x1:q)| ≤
�

Y

i=1

τSi =

Q�
i=1 s

1/�
i

P log P
≤ 1

�
·

P�
i=1 si

P log P

This implies that |B(x1:q)| ≤ c· size(D)
P log P

, (c is some constant);

hence wmax = c · size(D)
P log P

.
Let W be the total load of the balls. The expected max-

imum load is maximized when we have just W/wmax balls
with size wmax. Using the same argument as in the proof
of Theorem 4.1, we obtain that the expected maximum weight
attributed to the hashed values is Θ(W/P ). Summing over
all cases, we conclude that the algorithm is indeed load bal-
anced.
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6. IMPOSSIBILITY RESULTS
In this section we prove that any query that is not tall-flat

cannot be computed in one MP step. First, we show this re-
sult for two specific queries, RST (x, y) : −R(x), S(x, y), T (y)
and J(x, y) : −R(x), S(x), T (y). Using these results, we
prove the claim for any query that is not tall-flat.

Theorem 6.1. Any algorithm that computes the query
RST (x, y) : −R(x), S(x, y), T (y) in one MP step is skewed.

Proof. Let A be a one step, load balanced algorithm
for RST . Recall from the proof of Proposition 3.5 that
we assume that R, S, T are partitioned separately. Using
Corollary 3.8, we construct vectors X = (x1, . . . , xn) and
Y = (y1, . . . , yn), such that we can substitute each value xi

(yi) with a value x′
i (y′

i) and obtain a colluding set. Now,
let us consider an instance D of the database where R = X,
T = Y and S = {(xi, yi) | i = 1, . . . , n}. Fix also a run
h ∈ H such that the computation for this instance is load
balanced.

Let us first consider the broadcast phase. Since R, T con-
tain disjoint elements and the information exchanged may be
only generic (i.e. obtained by generic computations on the
instance), the only way for the servers to gain any informa-
tion about the other relations is to exchange tuples R(xi), or
T (yi), or S(xi, yi): we say that the values xi ∈ X or yi ∈ Y
or both have been broadcast. The total amount of commu-
nication is bounded by O(nε), hence at most O(nε) values
from X and from Y are broadcast. Let X ′ and Y ′ be the
other values, that are not broadcast: hence |X ′| = n−O(nε)
and similarly for |Y ′|. Let S′ = {(xi, yi) | xi ∈ X ′, yi ∈ Y ′};
it follows that |S′| = n − O(nε).

Claim: Suppose that we replace S by Sπ such that Sπ =
{(xi, yi) | (xi, yi) /∈ S′} ∪ {(xi, yπ(i)) | (xi, yi) ∈ S′}, where
π is any permutation on the indices of S′. Let us call this
instance Dπ. Using the argument in Corollary 3.8, we can
prove that every server containing R, T tuples will receive
exactly the same information under D or Dπ.

Thus, the tuples of R, T will be distributed as before, that
is, in a load balanced way. Denote R′ = X ′ and T ′ = Y ′.

We say that a pair (R′(xi), T
′(yj)) meets when both tuples

are placed in the same server. We next compute the total
number of pairs which meet for an instance Dπ. Since each
server holds O(n/P ) tuples from R′, T ′, it contains at most
O(n2/P 2) pairs that meet, which gives us a total of O(n2/P )
pairs. However, drawing values from R′, T ′, there are O(n2)
possible pairs. By the pigeonhole principle, there exists a
pair such that R(xi), T (yj) are not placed in the same server.
Then, we fix a permutation π such that the tuple S(xi, yj)
appears in Sπ.

Finally, let us examine the instance Dπ : R, T, Sπ. For
this instance, the tuple (xi, yj) is included in the final result.
However, the server s where S(xi, yj) is sent can not contain
both R(xi), T (yj). Let us assume w.l.o.g. that it does not
contain R(xi). Then, consider the instance D′

π where we
substitute the tuple R(xi) with R(x′

i).
Following from the collusion property, and since x′

i or xi

are not communicated during the broadcast phase, the com-
putation will be identical. This time, however, the tuple
(xi, yj) does not belong in the output. Nevertheless, the
server s that decides upon whether to output the tuple or
not does not contain x′

i; due to the genericity of the compu-
tation, s must again output the tuple (xi, yj), which leads
to a contradiction.

Theorem 6.2. Any algorithm that computes the query
J(x, y) : −R(x), S(x), T (y) in one MP step is skewed.

Proof. Let A be an algorithm computing J . First, we fix
the instance of T = {y1, . . . , yn}. Applying Corollary 3.8,
we can then find a vector X = (x1, . . . , xn) with distinct
elements, such that for each element xi ∈ X, there exists a
vector X ′

i where xi is replaced by x′
i �= xi and X, X ′

i collude.
Now, let us consider an instance D of the database where

R = X and S = {x′
i | xi ∈ X}. Following our construction,

R and S are disjoint. This means that J is empty and thus
the total load is

P

s ns = O(n). Since A is load balanced,
there exists a run h ∈ H such that the computation is load
balanced.

Notice that, since the elements are disjoint within each
relation and we allow only generic computation during the
broadcast phase, the only way to gain information is by
sending tuples. However, the amount of tuples we can send
is limited to O(nε). This means that from each relation,
at most O(nε) tuples can be sent to other servers. From
this point, we consider only the tuples t ∈ R, such that t, t′

are not communicated (call these set R′). Clearly, |R′| =
n − O(nε). We similarly define S′.

We say that a pair of elements (xi, yj) meets when T (yj) is
placed in the same server with either R′(xi) or S′(x′

i). Since
each server receives at most O(n/P ) values from each rela-
tion, each server holds O(n2/P 2) pairs that meet; in total,
O(n2/P ) pairs. However, the total number of possible pairs
is O(n2). This implies that, by the pigeonhole principle, we
can find a pair (xi, yj) such that the tuple T (yj) does not
occur in the same server with either R(xi) or S(x′

i).
For the last step of the proof, consider an instance D′

where we replace in R the value xi with x′
i. The servers

will receive exactly the same information, since xi or x′
i are

not communicated during the broadcast phase. Thus, due
to the collusion property, the behavior of the algorithm will
be identical and, for the new instance, T (yj) will not be
placed in the same server as R(x′

i), S(x′
i). Consequently,

A will not include the tuple (x′
i, yj) in the query output,

which is a contradiction, sine (x′
i, yj) now belongs in the

final result.

Based on Theorem 6.1 and Theorem 6.2, we can now prove
the following characterization.

Theorem 6.3. Let Q be any query that is not tall-flat.
Any algorithm that computes Q in one MP step is skewed.

Proof. We first show that the queries computable in one
MP step are a subset of hierarchical queries. Indeed, con-
sider a query Q which is not hierarchical. Then, there exists
a pair of variables x, y such that at(x)∩at(y) �= ∅ and none of
at(x), at(y) is a subset of the other. This means that w.l.o.g.
we can find atoms R, S, T such that at(x) \ at(y) = {R},
at(y) \ at(x) = {T} and at(x) ∩ at(y) = {S}. Fix any vari-
able �= x, y to obtain the same constant value in any rela-
tion. Then, Q reduces to computing the query RST (x, y) :
−R(x), S(x, y), T (y), which by Theorem 6.1 cannot be com-
puted in one MP step.

We also have the following property: if |at(x)| > 1 for a
variable x, then for every variable y we have that at(x) ∩
at(y) �= ∅. Indeed, if that was not true, then by fixing all
other variables �= x, y to obtain the same constant value,
we reduce Q to J(x, y) : −R(x), S(x), T (y), which cannot
be computed in one MP step by Theorem 6.2. Thus, if x
appears in more than one relation, then for every variable
y �= x it holds that either at(x) ⊆ at(y) or at(y) ⊆ at(x).

Let us now order the m variables in decreasing order of
|at(x)|: x1, x2, . . . , xm. Consider the smallest index k such
that for every i > k, |at(xi)| = 1. Using the above property,
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for the first k variables we have that at(x1) ⊇ at(x2) . . . ⊇
at(xk). Finally, consider a variable xj , j > k; by construc-
tion |at(xj)| = 1. We use again the property to see that for
any i ≤ k, at(xj) ⊆ at(xi), since at(xj) is a singleton set.
Thus, Q satisfies all three properties of a tall-flat query.

7. DISCUSSION
Star queries. Consider the following question: given a

query Q, what is the smallest number of MP steps necessary
to compute Q ? We answer this question for star queries,
and leave it open for arbitrary conjunctive queries. W.l.o.g.
we assume that the star query is of the form Q(x1, . . . , xk) :
−R(x1, . . . , xk), S1(x1), . . . , Sk(xk). Since Q is not tall-flat,
we need at least two MP steps to compute it. We show here
that two steps are indeed optimal.

Proposition 7.1. A star query can be computed in two
MP steps.

Proof. The load balanced algorithm for any star query
works as follows. In the first step, compute all subqueies
Qi(x1, . . . , xk) : −R(x1, . . . , xk), Si(xi) in parallel, in one
MP step (each is a semijoin query). In the second step,
compute the intersection Q(x̄) : −Q1(x̄), Q2(x̄), . . . , Qk(x̄)
(this MP step does not need a broadcast phase).

General queries. If Q is a general conjunctive query, it
seems difficult to determine the minimum number of parallel
steps required to compute Q, because the intermediate re-
sults may be much larger than the output. For example, the
output may be empty, but in any query plan, some subplan
may return an intermediate result whose size is quadratic
in the size of the input. One possibility is to adjust the
definition of load balance to include in n the size of any
intermediate computations.

An algorithm for this case would work as follows. Let
us assume a query Q and a query plan P for Q. First,
reduce the nodes of P by combining consecutive query com-
putations which correspond to a tall-flat query in one MP
step. For example, if the plan operator computes P1(x) :
−R(x), S(x) and its parent computes P2(x) : −P1(x), T (x),
then we compress the computation in one step: P2(x) :
−R(x), S(x), T (x), since it is a flat query. Each plan P can
be thus converted into a minimal plan P ′; let d be its depth.
It is easy to observe that one can compute P ′ in d MP steps.

Example 7.2. Let us consider the following chain query:
C(x, y, z, w, v) : −R(x, y), S(y, z), T (z,w), U(w, v). A naive
query plan would sequentially compute the 3 joins to get the
final result: this requires 3 MP steps. However, we can do
better if we consider the following query plan:

(R(x, y) � S(y, z)) � (T (z,w) � U(w, v))

This plan corresponds to a query tree of depth 2; notice that
R � S and T � U can be computed in parallel in the same
MP step. Hence, we can compute the query in just two MP
steps, which is also optimal (since it is not tall-flat).

This example generalizes to any chain query: a chain
query with k atoms can be computed in log k MP steps.

Using Data Statistics. So far, our discussion has fo-
cused on the worst case scenario, and both our algorithms
and our impossibility results assumed that the sizes of the in-
put relations are independent. In practice, one often knows
the sizes of the relations, and can determine that one is
much larger than the other. Afrati and Ullman [1] have
shown how to compute any conjunctive query in one par-
allel step. We illustrate their algorithm on the k-way star

query Q at the beginning of this section. Assume that the P
processors are organized in a k-dimensional grid. Thus, each
server is indexed by a k-tuple of integers (s1, . . . , sk), where

si ∈ [ k
√

P ], for i = 1, k. For each i = 1, k, let hi : U →
[ k
√

P ] be a hash function. Then, during the communica-
tion phase the algorithm sends R(x1, . . . , xk) to the server
(h1(x1), . . . , hk(xk)) and replicates Si(xi) to all servers of
the form (∗, ∗, . . . , hi(xi), . . . , ∗); in other words, Si(xi) is

replicated
k
√

P k−1 times. In the computation phase, each
server computes the join locally. Thus, the algorithm takes a
single communication step. In our framework, the algorithm
is skewed, because it replicates the relations Si. However,
suppose that it holds |R| = n, |S1| = . . . = |Sk| = m, and

m
k
√

P k−1 = O(n); then the algorithm is load balanced, and
computes the star query in one step. This discussion shows
that better MP algorithms can be designed by taking into
account statistics on the input relations.

8. CONCLUSIONS
In this work, we propose a new theoretical model which

captures massive parallelism in today’s systems. In this
model, the measure of complexity consists of the number of
parallel steps necessary to compute a query. Under this con-
text, we study the complexity of conjunctive queries and we
give a complete characterization of the queries computable
in one parallel step. Future work may include several direc-
tions: for any given conjunctive query, can we find the most
efficient query plan in terms of steps of the MP model; what
is the parallel complexity for more general sets of queries
(e.g. queries with unions); and, finally, how can we imple-
ment and make the algorithms presented here practical.

Acknowledgments. We would like to thank Foto Afrati,
Magda Balazinska, Bill Howe, YongChul Kwon and Jeffrey
Ullman for the useful discussions and suggestions.

9. REFERENCES
[1] F. N. Afrati and J. D. Ullman. Optimizing joins in a

map-reduce environment. In EDBT, pages 99–110, 2010.

[2] P. Alvaro, W. Marczak, N. Conway, J. M. Hellerstein, D. Maier,
and R. C. Sears. Dedalus: Datalog in time and space. Technical
Report UCB/EECS-2009-173, EECS Department, University of
California, Berkeley, Dec 2009.

[3] L. Carter and M. N. Wegman. Universal classes of hash
functions. J. Comput. Syst. Sci., 18(2):143–154, 1979.

[4] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib,
S. Weaver, and J. Zhou. Scope: easy and efficient parallel
processing of massive data sets. Proc. VLDB Endow.,
1:1265–1276, August 2008.

[5] S. Cohen. Containment of aggregate queries. SIGMOD Record,
34(1):77–85, 2005.

[6] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E.
Schauser, E. E. Santos, R. Subramonian, and T. von Eicken.
Logp: Towards a realistic model of parallel computation. In
PPOPP, pages 1–12, 1993.

[7] N. N. Dalvi and D. Suciu. Efficient query evaluation on
probabilistic databases. VLDB J., 16(4):523–544, 2007.

[8] J. Dean and S. Ghemawat. Mapreduce: Simplified data
processing on large clusters. In OSDI, pages 137–150, 2004.

[9] D. J. DeWitt and J. Gray. Parallel database systems: The
future of high performance database systems. Commun. ACM,
35(6):85–98, 1992.

[10] A. Gates, O. Natkovich, S. Chopra, P. Kamath, S. Narayanam,
C. Olston, B. Reed, S. Srinivasan, and U. Srivastava. Building
a highlevel dataflow system on top of mapreduce: The pig
experience. PVLDB, 2(2):1414–1425, 2009.

[11] M. Grohe, Y. Gurevich, D. Leinders, N. Schweikardt,
J. Tyszkiewicz, and J. V. den Bussche. Database query
processing using finite cursor machines. Theory Comput. Syst.,
44(4):533–560, 2009.

[12] J. M. Hellerstein. The declarative imperative: experiences and
conjectures in distributed logic. SIGMOD Rec., 39:5–19,
September 2010.

233



[13] N. Immerman. Expressibility and parallel complexity. SIAM J.
Comput., 18(3):625–638, 1989.

[14] H. J. Karloff, S. Suri, and S. Vassilvitskii. A model of
computation for mapreduce. In SODA, pages 938–948, 2010.

[15] P. Koutris and D. Suciu. Parallel evaluation of conjunctive
queries. Research Report UW-CSE-11-03-01, University of
Washington, 2011.

[16] L. Libkin. Elements of Finite Model Theory. Springer, 2004.

[17] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar,
M. Tolton, and T. Vassilakis. Dremel: Interactive analysis of
web-scale datasets. PVLDB, 3(1):330–339, 2010.

[18] A. Pagh and R. Pagh. Uniform hashing in constant time and
optimal space. SIAM J. Comput., 38(1):85–96, 2008.

[19] M. Raab and A. Steger. ”balls into bins” - a simple and tight
analysis. In RANDOM, pages 159–170, 1998.

[20] P. Sanders. On the competitive analysis of randomized static
load balancing. In Proceedings of the first Workshop on
Randomized Parallel Algorithms, RANDOM, 1996.

[21] L. J. Stockmeyer and U. Vishkin. Simulation of parallel random
access machines by circuits. SIAM J. Comput., 13(2):409–422,
1984.

[22] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
S. Anthony, H. Liu, P. Wyckoff, and R. Murthy. Hive - a
warehousing solution over a map-reduce framework. PVLDB,
2(2):1626–1629, 2009.

[23] L. G. Valiant. A bridging model for parallel computation.
Commun. ACM, 33(8):103–111, 1990.

[24] Y. Xu, P. Kostamaa, X. Zhou, and L. Chen. Handling data
skew in parallel joins in shared-nothing systems. In SIGMOD
’08: Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pages 1043–1052, New
York, NY, USA, 2008. ACM.

[25] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P. K.
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APPENDIX
Proposition A.1. Frequency Sampling ( Subsection 4.1)

includes in F every value x with fR(x) ≥ τ with high prob-
ability. Moreover, for some constant b, F contains no value
x′ with fR(x′) < b · τ w.h.p.

Proof. The proof is based on a standard application
of Chernoff bounds. For the first part, we compute the
probability that a frequent value a is not included in F .
The probability that we sample a tuple with this value is
fR(a)/r ≥ τ/r and the probability that a /∈ F equals the
probability that tuples with a are sampled less than c·τ ·T/r
times. If K(a, v), we denote v by f ′(a), i.e. f ′(a) gives
the estimation for the frequency of a. Then, Pr[a /∈ F ] =
Pr[f ′(a) < c · τ · T/r].

Notice that each sample is an independent random choice
and a is chosen with probability ≥ τ/r. Moreover, E[f ′(a)] =
P

j=1,T fR(a)/r ≥ τ · T/r. We can thus apply the Chernoff

bound with δ = (c − 1)/c, which gives us that Pr[f ′(a) <
c·τ ·T

r
] ≤ Pr[f ′(a) < (1 − δ) · E[f ′(a)]] < e−E[f ′(a)]δ2/2. Since

there are ≤ r/τ frequent values, we can apply a union bound:

Pr[∃a /∈ F ] ≤ P

a:fR(a)≥τ Pr[a /∈ F ] < (r/τ )e−E[f ′(x)]δ2/2 =

(r/τ )e−C·τ ·T/r, where C = (c− 1)2/2c2. For T = d1 · r log r
τ

,
where d1 is a constant, the probability of failure becomes
arbitrarily small.

For the second part, consider a value a such that fR(a) <
b · τ for some constant b < 1. Using similar arguments as
above, we can show that E[f ′(a)] < b · τ · T/r. We apply
again the Chernoff bound (for a suitable choice of δ): Pr[a ∈
F ] = Pr[f ′(a) ≥ c·τ ·T

r
] = Pr[f ′(a) > (1 + δ) · E[f ′(a)]] <

2−(1+δ)·E[f ′(a)] = 2−C·τ ·T/r , where C is some constant de-
pending on b, c. We use again a union bound to get that

Pr[∃a ∈ F ] ≤ P

a:fR(a)<b·τ Pr[a ∈ F ] ≤ r · 2− C·τ·T
r . For

T = d2 · r log r
τ

, where d2 is an appropriate constant, the
probability of failure becomes arbitrarily small (O(1/r)).

By choosing d = max{d1, d2}, for T = d· r log r
τ

, both parts
of the proposition are satisfied w.h.p.

Proof. (Of Proposition 4.3) Recall that we assume sep-
arate partitioning of the input relations. Let A be a load
balanced algorithm computing Q with one broadcast round.

Moreover, let us denote by H the set of hash families from
where A randomly picks a hash family. Applying Corollary 3.8,
we can find a vector X = (x1, . . . , xn) such that for each
xi ∈ X, there exists a vector X ′

i where xi is substituted by
a value x′

i �= xi and X, X ′
i collude.

Now, consider any instance where T = X. During the
broadcast step, the servers containing T decide, indepen-
dently of the relations R,S, to communicate O(nε) tuples
of X. Denote by X ′ the set containing the rest of the
tuples, |X ′| = n − O(nε). Next, pick a value xi ∈ X ′

and consider the instance where R = {(xi, y1), . . . , (xi, yn)},
S = {(xi, z1), . . . , (xi, zn)} and T = {x1, . . . , x

′
i, . . . , xn}.

Since the computation is load balanced, and the output
empty, there exists a run h ∈ H such that the maximum
load of any server is O(n/P ). We say that a pair (yj , zk)
meets when both tuples R(xi, yj), S(xi, zk) are placed in the
same server. There are O(n2) possible pairs; however, each
server cannot hold more than O(n2/P 2) pairs that meet.
Thus, in total the servers hold O(n2/P ) pairs, which im-
plies that there exists at least one pair (yj , zk) such that
R(xi, yj), S(xi, zk) are never placed in the same server.

Finally, let us examine the case where we substitute the
tuple T (x′

i) with T (xi). Since the two vectors collude, T, R, S
will send exactly the same information during the broadcast
phase. Moreover, since the replaced tuple will not be com-
municated, servers containing R, S will distribute their tu-
ples in exactly the same way, hence R(xi, yj), S(xi, zk) will
never meet. Following from the genericity of the compu-
tation, the tuple (xi, yj , zk) can not belong in the output;
however, since xi ∈ T , this is a contradiction.

Proof. (Of Proposition 4.2) Notice that each value of x
falls into exactly one of the four cases. Let us first consider
the first case and a value a ∈ RF ′.

We have that N(a) = fR(a)fS(a)fT (a) + fR(a) + fS(a) +
fT (a). The second step of the broadcast phase guarantees
that fS(a), fT (a) ≥ 1. Hence E[maxs Ns(a)] ≤ fS(a) +

fT (a) + 2fR(a)
P

· (fS(a)fT (a) + 1) ≤ c
P
· fR(a)fS(a)fT (a) for

some constant c. We can obtain a similar bound for values
of x which fall into the cases 2,3. It remains to consider the
last case, where a is not frequent in any of the relations. Let
Xf be the set of these values. For any value a ∈ Xf , we
have that N(a) ≤ τRτSτT + τR + τS + τT ≤ 4τRτSτT . Ap-
plying the Arithmetic-Geometric means inequality, we get

that τRτSτT =
3√rst

P log P
≤ r+s+t

3P log P
. Hence, N(a) ≤ c′ · r+s+t

P log P

for some constant c′.
Using the balls in bins framework, we are throwing balls

u.a.r. into servers and wmax = c′ · r+s+t
P log P

. Following again
the argument of the proof for Theorem 4.1, we derive that
E[maxs Ns(Xf )] = Θ(W/P ), where W denotes the total
load attributed to the set Xf .

Summing over the values of x for all cases, we obtain that
the computation is indeed load-balanced.
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