
c©Copyright 2015

Paraschos Koutris



Query Processing for Massively Parallel Systems

Paraschos Koutris

A dissertation
submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

University of Washington

2015

Reading Committee:

Dan Suciu, Chair

Paul Beame

Magdalena Balazinska

Program Authorized to Offer Degree:
Computer Science and Engineering



University of Washington

Abstract

Query Processing for Massively Parallel Systems

Paraschos Koutris

Chair of the Supervisory Committee:
Professor Dan Suciu

Computer Science and Engineering

The need to analyze and understand big data has changed the landscape of data manage-

ment over the last years. To process the large amounts of data available to users in both

industry and science, many modern data management systems leverage the power of massive

parallelism. The challenge of scaling computation to thousands of processing units demands

that we change our thinking on how we design such systems, and on how we analyze and

design parallel algorithms. In this dissertation, I study the fundamental problem of query

processing for modern massively parallel architectures.

I propose a theoretical model, the MPC model (Massively Parallel Computation), to

analyze the performance of parallel algorithms for query processing. In the MPC model, the

data is initially evenly distributed among p servers. The computation proceeds in rounds:

each round consists of some local computation followed by global exchange of data between

the servers. The computational complexity of an algorithm is characterized by both the

number of rounds necessary, and the maximum amount of data, or maximum load, that each

processor receives. The challenge is to identify the optimal tradeoff between the number of

rounds and maximum load for various computational tasks.

As a first step towards understanding query processing in the MPC model, we study

conjunctive queries (multiway joins) for a single round. We show that a particular type of

distributed algorithm, the HyperCube algorithm, can optimally compute join queries when



restricted to one communication round and data without skew.

In most real-world applications, data has skew (for example a graph with nodes of large

degree) that causes an uneven distribution of the load, and thus reduces the effectiveness

of parallelism. We show that the HyperCube algorithm is more resilient to skew than

traditional parallel query plans. To deal with any case of skew, we also design data-sensitive

techniques that identify the outliers in the data and alleviate the effect of skew by further

splitting the computation to more servers.

In the case of multiple rounds, we present nearly optimal algorithms for conjunctive

queries for the case of data without skew. A surprising consequence of our results is that

they can be applied to analyze iterative computational tasks: we can prove that, in order to

compute the connected components of a graph, any algorithm requires more than a constant

number of communication rounds. Finally, we show a surprising connection of the MPC

model with algorithms in the external memory model of computation.
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Chapter 1

INTRODUCTION

Over the last decade, there has been a large increase in the volume of data that is

being stored, processed and analyzed. In order to extract value from the large amounts of

data available to users in both industry and science, the collected data is typically moved

through a pipeline of several data processing tasks, which include cleaning, filtering, joining,

aggregating [32]. Improving the performance of these tasks is a fundamental problem in big

data analysis, and many modern data management systems have resorted to the power of

parallelism to speed up the computation. Parallelism enables the distribution of computation

for data-intensive tasks into hundreds, and even thousands of machines, and thus significantly

reduces the completion time for several crucial data processing tasks.

The motivating question of this dissertation is the following: How can we analyze the

behavior of query processing algorithms in massively parallel environments? In this disserta-

tion, we explore the parameters that influence system behavior in this scale of parallelism,

and present a theoretical framework, called the Massively Parallel Model, or MPC. We then

apply the MPC model to rigorously analyze the computational complexity of various parallel

algorithms for query processing, with a primary focus on join processing. Using the MPC

model as a theoretical tool, we show how we can design novel algorithms and techniques for

query processing, and how we can prove their optimality.

1.1 Motivation

Query processing for big data is typically performed on a shared-nothing parallel architec-

ture [76]. In a shared nothing architecture, the processing units share no memory or other

resources, and communicate with one another by sending messages via an interconnection
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network. Parallel database systems, pioneered in the late 1980s by GAMMA [38], have been

using such a parallel architecture: an incomplete list of these systems includes Teradata [6],

Netezza [5], Vertica [7] and Greenplum [2].

The use of the shared nothing architecture and the scaling to an even larger number of

machines became prevalent following the introduction of the MapReduce framework [37], its

open source implementation Hadoop [3], and the rich ecosystem of extensions and languages

that has been built on top (PigLatin [44, 66], Hive [74]).

Several other big data management systems were developed after the introduction of

the MapReduce paradigm: for example, Scope [31], Dryad [52, 84] and Dremel [60]. More

recently big data analysis systems have been built to support efficient iterative computing

and machine learning tasks, in addition to standard query processing: Spark [85] and its

SQL-extension Shark [81], Hyracks [28] and the software stack of ASTERIX that is built on

top [19], Stratosphere [39], and the system that has been developed by the Database group

at the University of Washington, Myria [4]. We should also mention two systems based on

the Bulk Synchronous Parallel (BSP) model [77]: Pregel [59], developed for parallel graph

processing, and Apache Hama [1]. 1

Reasoning about the computational complexity of algorithms in such massively parallel

systems requires that we shift from our thinking of traditional query processing. Typically, a

query is evaluated by a sufficiently large number of servers such that the entire data can be

kept in the main memory of these servers; hence, the complexity is no longer dominated by

the number of disk accesses. Instead, the new complexity bottleneck becomes the amount of

communication, and how this communication is distributed among the available computa-

tional resources. Indeed, as we increase the number of machines to which the computation

is distributed, more communication is required. Even though the interconnection networks

are often faster than accessing the local disk, managing the communication cost becomes a

major concern for both system and algorithm designers.

1GraphLab [58] and Grappa [62], although they run on shared nothing architectures, hide the underlying
architecture from the programmer and expose instead a shared-memory logical interface.
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In addition, in most systems (such as MapReduce and Pregel), synchronization is guaran-

teed at every step of the computation. Any data reshuffling requires global synchronization

of all servers, which comes at a significant cost; synchronizing requires additional compu-

tational resources and communication. Moreover, in synchronous computation we often see

the phenomenon of stragglers, which are machines that complete a computational task slower

than others 2 In the context of MapReduce framework, this phenomenon is commonly re-

ferred to as the curse of the last reducer [73]. Since we have to wait for every machine to finish

at every synchronization step, limiting the number of synchronization steps is an important

design consideration in such parallel systems.

An additional reason for the appearance of stragglers is the uneven distribution of the

computational or data load among the available resources. Consequently, apart from the

communication cost and the amount of synchronization, a fundamental rule when we par-

allelize at scale is that the computational and data load must be distributed as evenly as

possible between all the available machines. Thus, we have to communicate as little as

possible, while simultaneously making sure that the data is partitioned evenly among the

servers. This means that we have to account for a common phenomenon that occurs in every

data partitioning or computation-balancing method, the presence of skew. Data skew, in

particular, appears when certain parts of the data are more ‘hot’ than others. As an exam-

ple, consider the Twitter follower graph, where we store an edge for each ‘follows’ relation

between two users: in this case, the Justin Bieber node results in skew, since a dispropor-

tionate amount of edges in the graph will refer to it. Parallel systems can either detect the

presence of skew in runtime and rebalance dynamically [57], or use data statistics to deploy

skew-resilient algorithms.

In summary, the parameters that are dominating computation in massively parallel sys-

tems are the total communication, the number of synchronization steps, and the maximum

data load over all machines (instead of the average load). The MPC model that we intro-

2Stragglers appear for many reasons, such as hardware heterogeneity or multi-tenancy.
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duce captures all these three parameters in a simple but powerful model that allows us to

not only analyze the behavior of parallel algorithms, but also show their optimality through

lower bounds.

1.2 Contribution

In this dissertation, we introduce the Massively Parallel Computation model, or MPC, as

a theoretical tool to analyze the performance of parallel algorithms for query processing on

relational data.

In the MPC model, the data is initially evenly distributed among p servers/machines.

The computation proceeds in rounds, or steps: each round consists of some local computation

followed by global exchange of data between the servers. The computational complexity of

an algorithm is characterized by both the number of rounds r necessary, and the maximum

amount of data, or maximum load, L, that each machine receives. An ideal parallel algorithm

would use only one round and distribute the data evenly without any replication, hence

achieving a maximum load M{p, where M is the size of the input data. Since this is rarely

possible, the algorithms need to use more rounds, have an increased maximum load, or both.

Using the MPC model as a theoretical framework, we then identify the optimal tradeoff

between the number of rounds and maximum load for query processing tasks, and in particular

for the computation of conjunctive queries (join queries). Join processing is one of the

central computational tasks when processing relational data, and a key component of any

big data management system. Understanding this tradeoff equips system designers with

knowledge about how much synchronization, communication and load the computation of a

query requires, and what is possible to achieve under specific system constraints. Our results

in this setting are summarized below.

Input Data without Skew. We establish tight upper and lower bounds on the maximum

load L for algorithms that compute full 3 join queries in a single round. We show that a

3By full join queries we mean join queries that return all possible outputs, i.e. there are no projections.
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particular type of distributed algorithm, the HyperCube algorithm, which was introduced

in [15] as the Shares algorithm, can optimally compute join queries when the input is

restricted to having no skew.

More formally, consider a conjunctive query q on relations S1, . . . , S`, of size M1, . . . ,M`

respectively. Let u � pu1, . . . , u`q be a fractional edge packing [35] of the hypergraph of

the query q: such a packing assigns a fractional value uj to relation Sj, such that for every

variable x, the sum of the values of the relations that include x is at most 1. Then, we show

that any (randomized or deterministic) algorithm that computes q in a single round must

have load

L � Ω

�
��±`

j�1M
uj
j

p

�1{
°

j uj
�


Moreover, we show that the HyperCube algorithm matches this lower bound asymptotically

when executed on data with no skew. As an example, for the triangle query C3px, y, zq �
S1px, yq, S2py, zq, S3pz, xq, when all relations have size equal to M , we have an MPC algorithm

that computes the query in a single round with an optimal load of OpM{p2{3q. (The optimal

edge packing in this case is p1{2, 1{2, 1{2q.) Our analysis of the HyperCube algorithm

further shows that it is more resilient to skew than traditional parallel join algorithms, such

as the parallel hash-join.

For multi-round algorithms, we establish upper and lower bounds in a restricted version of

the MPC model that we call the tuple-based MPC model: this model restricts communication

so that only relational tuples can be exchanged between servers. Both our upper and lower

bounds hold for matching databases, where each value appears exactly once in any attribute

of a relation (and so the skew is as small as possible). We show that to achieve a load L in r

rounds for a given query, we have to construct a query plan of depth r, where each operator

is a subquery that can be computed by the HyperCube algorithm in a single round with

load L. For example, to compute the query L8 � S1px1, x2q, . . . , S8px8, x9q, we can either

use a bushy join tree plan of depth 3, where each operation is a simple join between two

relations, which will result in a load of OpM{pq. Alternatively, since we can compute the
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4-way join L4 in a single round with load OpM{p1{2q, we can have a plan of depth 2; thus,

we can have a 2-round algorithm with load OpM{p1{2q. We prove that this type of plan

is almost optimal for a large class of queries, which we call tree-like queries. To the best

of our knowledge, these are the first lower bounds on the load of parallel query processing

algorithms for multiple rounds.

Input Data with Skew. In many real-world applications, the input data has skew; for

example, a node in a graph with large degree, or a value that appears frequently in a relation.

In this dissertation, we present several algorithms and techniques regarding how we handle

skew in the context of the MPC model, mostly focusing on single-round algorithms.

We show first that the HyperCube algorithm, even though it is suboptimal in the

presence of skew, is more resilient to skewed load distribution than traditional parallel join

algorithms. We then present a general technique of handling skew when we compute join

queries; this technique requires though that we know additional information about the out-

liers in the data and their frequency (we call these heavy hitters). We show how to apply this

technique to obtain optimal single-round algorithms for star queries and the triangle query

C3. Our algorithms are optimal in a strong sense: they are not worst-case optimal, but are

optimal for the particular data distribution of the input.

For general join queries, we present a single-round algorithm, called the BinHC algo-

rithm, which however does not always match our lower bounds.

Beyond Query Processing. Our techniques for proving lower bounds on the round-

load tradeoff for computing join queries imply a powerful result on a different problem, the

problem of computing connected components in a graph. We prove that any algorithm that

computes the connected components on a graph of size M with load that is opMq cannot

use a constant number of rounds. To the best of our knowledge, this is the first result on

bounding the number of rounds for this particular graph processing task.
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External Memory Algorithms. We show a natural connection of the MPC model with

the External Memory Computational model. In this model, there exists an internal memory

of size M , and a large external memory, and the computational complexity of an algorithm

is defined as the number of input/output operations (I/Os) of the internal memory. The

main result is that any MPC algorithm can be translated to an algorithm in the external

memory model, such that an upper bound on the load translates directly to an upper bound

on the number of I/Os.

We show surprisingly that we can apply this connection to obtain an (almost) optimal

algorithm for C3 in the external memory model. This result hence implies that designing

parallel algorithms in the MPC model can lead to advancement in the current state-of-the-art

in external memory algorithms.

1.3 Organization

We begin this thesis by providing some background and terminology, along with the expo-

sition of some technical tools, in Chapter 2. We then formally define the MPC model in

Chapter 3, and present a detailed comparison with previous models for parallel processing.

In Chapter 4, we present our results for computing join queries in a single round for

data without skew, and we discuss both the algorithms and lower bounds. We study query

processing in the presence of skew in Chapter 5, where we introduce new algorithms to handle

the outliers present in the data. In Chapter 6, we present algorithms and lower bounds for

multiple rounds, both for data with and without skew.

In Chapter 7, we discuss the surprising connection between the MPC model and the

external memory model. We finally conclude in Chapter 8.
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Chapter 2

BACKGROUND

In this chapter, we present some background that will be necessary to the reader to

follow this dissertation. We present in detail the class of conjunctive queries, which will be

the queries this dissertation focuses on. We then lay some notation and useful mathematical

inequalities that will prove handy throughout this work.

2.1 Conjunctive Queries

The main focus in this work is the class of Conjunctive Queries (CQ). A conjunctive query

q will be denoted as

qpx1, . . . , xkq � S1px̄1q, . . . , S`px̄`q (2.1)

The notation we are using here is based on the Datalog language (see [8] for more details).

The atom qpx1, . . . , xkq is called the head of the query. For each atom Sjpx̄jq in the body of

the query, Sj is the name of the relation in the database schema. We denote the arity of

relation Sj with aj, and also write a � °`
j�1 aj to express the sum of all the arities for the

atoms in the query.

Definition 2.1.1. A CQ q is full if every variable in the body of the query also appears in

the head of the query. A CQ q is boolean if k � 0, i.e. the head of the query is qpq.

For example, the query qpxq � Spx, yq is not full, since variable y does not appear in the

head. The query qpq � Spx, yq is boolean.

Definition 2.1.2. A CQ q is self-join-free if every relation name appears exactly once in the

body of the query.
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The query qpx, y, zq � Rpx, yq, Spy, zq is self-join-free, while the query qpx, y, zq �
Spx, yq, Spy, zq is not self-join-free, since relation S appears twice in the query.

The result qpDq of executing a conjunctive query q over a relational database D is ob-

tained as follows. For each possible assignment α of values to the variables in x̄1, . . . , x̄` such

that for every j � 1, . . . , ` the tuple αpx̄jq belongs in the instance of relation Sj, the tuple

αpx1, . . . , xkq belongs in the output qpDq.

Definition 2.1.3. The hypergraph of a CQ q is defined by introducing one vertex for each

variable in the body of the query and one hyperedge for each set of variables that occur in a

single atom.

We say that a conjunctive query is connected if the query hypergraph is connected. For ex-

ample, the query qpx, yq � Rpxq, Spyq is not connected, whereas qpx, yq � Rpxq, Spyq, T px, yq
is connected. We use varspSjq to denote the set of variables in the atom Sj, and atomspxiq to

denote the set of atoms where xi occurs; k and ` denote the number of variables and atoms

in q, as in (2.1). The connected components of q are the maximal connected subqueries of q.

We define below three important classes of full self-join-free conjunctive queries that will

be seen frequently throughout this work.

Lkpx0, x1, . . . , xkq � S1px0, x1q, S2px1, x2q, . . . , Skpxk�1, xkq
Ckpx1, . . . , xkq � S1px1, x2q, S2px2, x3q, . . . , Skpxk, x1q

Tkpz, x1, . . . , xkq � S1pz, x1q, S2pz, x2q, . . . , Skpz, xkq

The first class is the class of line queries, the second of cycle queries, and the third of star

queries, and examples of their hypergraphs are in Fig. 2.1.
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x0 x1

S1
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(a) Hypergraph of L4

x1 x2

x3
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x4
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(b) Hypergraph of C4

z

x1

x2

x3

x4

S1
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S3

S4

(c) Hypergraph of T4

Figure 2.1: Examples for three different classes of conjunctive queries: (a) line queries Lk, (b) cycle queries
Ck and (c) star queries Tk. The hypergraphs are depicted as graphs, since all relations are binary.

2.1.1 The Characteristic of a CQ

We introduce here a new notion, that of the characteristic of a conjunctive query, which will

be used later in this work in order to count the number of answers for queries over particular

input distributions. The characteristic of a conjunctive query q as in (2.1) is defined as

χpqq � a � k � ` � c, where a � °j aj is the sum of arities of all atoms, k is the number of

variables, ` is the number of atoms, and c is the number of connected components of q.

For a query q and a set of atoms M � atomspqq, define q{M to be the query that results

from contracting the edges in the hypergraph of q. As an example, for the line query L5 we

have that L5{tS2, S4u � S1px0, x1q, S3px1, x3q, S5px3, x5q.

Lemma 2.1.4. The characteristic of a query q satisfies the following properties:

(a) If q1, . . . , qc are the connected components of q, then χpqq � °c
i�1 χpqiq.

(b) For any M � atomspqq, χpq{Mq � χpqq � χpMq.
(c) χpqq ¥ 0.

(d) For any M � atomspqq, χpqq ¥ χpq{Mq.

Proof. Property (a) is immediate from the definition of χ, since the connected components of

q are disjoint with respect to variables and atoms. Since q{M can be produced by contracting
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according to each connected component of M in turn, by property (a) and induction it

suffices to show that property (b) holds in the case that M is connected. If a connected M

has kM variables, `M atoms, and total arity aM , then the query after contraction, q{M , will

have the same number of connected components, kM � 1 fewer variables, and the terms for

the number of atoms and total arity will be reduced by aM � `M for a total reduction of

aM � kM � `M � 1 � χpMq. Thus, property (b) follows.

By property (a), it suffices to prove (c) when q is connected. If q is a single atom Sj

then χpSjq ¥ 0, since the number of variables is at most the arity aj of the atom. If q has

more than one atom, then let Sj be any such atom: then χpqq � χpq{Sjq �χpSjq ¥ χpq{Sjq,
because χpSjq ¥ 0. Property (d) follows from (b) using the fact that χpMq ¥ 0.

For a simple illustration of property (b), consider the example above L5{tS2, S4u, which

is equivalent to L3. We have χpL5q � 10 � 6 � 5 � 1 � 0, and χpL3q � 6 � 4 � 3 � 1 � 0,

and also χpMq � 0 (because M consists of two disconnected components, S2px1, x2q and

S4px3, x4q, each with characteristic 0). For a more interesting example, consider the query

K4 whose graph is the complete graph with 4 variables:

K4 � S1px1, x2q, S2px1, x3q, S3px2, x3q, S4px1, x4q, S5px2, x4q, S6px3, x4q

and denote M � tS1, S2, S3u. Then K4{M � S4px1, x4q, S5px1, x4q, S6px1, x4q and the charac-

teristics are: χpK4q � 12�4�6�1 � 3, χpMq � 6�3�3�1 � 1, χpK4{Mq � 6�2�3�1 � 2.

Finally, we define the class of tree-like queries, which will be extensively used in Chapter 6

for multi-round algorithms.

Definition 2.1.5. A conjunctive query q is tree-like if q is connected and χpqq � 0.

For example, the query Lk is tree-like; in fact, a query over a binary vocabulary is tree-

like if and only if its hypergraph is a tree. An important property of tree-like queries is that

every connected subquery will be also tree-like.
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2.1.2 The Fractional Edge Packing of a CQ

A fractional edge packing (also known as a fractional matching) of a query q is any feasible

solution u � pu1, . . . , u`q of the following linear constraints:

@i P rks :
¸

j:xiPvarspSjq

uj ¤ 1 (2.2)

@j P r`s : uj ¥ 0

The edge packing associates a non-negative weight uj to each atom Sj such that for

every variable xi, the sum of the weights for the atoms that contain xi do not exceed 1. If all

inequalities are satisfied as equalities by a solution to the LP, we say that the solution is tight.

The dual notion is a fractional vertex cover of q, which is a feasible solution v � pv1, . . . , vkq
to the following linear constraints:

@j P r`s :
¸

i:xiPvarspSjq

vi ¥ 1

@i P rks : vi ¥ 0

At optimality, maxu

°
j uj � minv

°
i vi; this quantity is denoted τ� and is called the frac-

tional vertex covering number of q.

Example 2.1.6. An edge packing of the query L3 � S1px1, x2q, S2px2, x3q, S3px3, x4q is any

solution to u1 ¤ 1, u1 � u2 ¤ 1, u2 � u3 ¤ 1 and u3 ¤ 1. In particular, the solution p1, 0, 1q
is a tight edge packing; it is also an optimal packing, thus τ� � 2.

We also need to refer to the fractional edge cover, which is a feasible solution u �
pu1, . . . , u`q to the system above where ¤ is replaced by ¥ in Eq.(2.2). Every tight fractional

edge packing is a tight fractional edge cover, and vice versa. The optimal value of a fractional

edge cover is denoted ρ�. The fractional edge packing and cover have no connection, and

there is no relationship between τ� and ρ�. For example, for q � S1px, yq, S2py, zq, we have
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Vertex Covering LP Edge Packing LP

@j P r`s :
¸

i:xiPvarspSjq

vi ¥ 1 (2.3)

@i P rks : vi ¥ 0

@i P rks :
¸

j:xiPvarspSjq

uj ¤ 1 (2.4)

@j P r`s : uj ¥ 0

minimize
°k
i�1 vi maximize

°`
j�1 uj

Figure 2.2: The vertex covering LP of the hypergraph of a query q, and its dual edge packing LP.

τ� � 1 and ρ� � 2, while for q � S1pxq, S2px, yq, S3pyq we have τ� � 2 and ρ� � 1. The

two notions coincide, however, when they are tight, meaning that a tight fractional edge

cover is also a tight fractional edge packing and vice versa. The fractional edge cover has

been used recently in several papers to prove bounds on query size and the running time of

a sequential algorithm for the query [22, 63, 64]; for the results in this paper we need the

fractional packing.

2.1.3 The Database Instance

Throughout this work, we will often focus on specific types of database instances with dif-

ferent properties.

Let R be a relation of arity r. For a tuple t over a subset of the attributes rrs that exists

in R, we define dtpRq � |σtpRq| as the degree of the tuple t in relation R. In other words,

dtpRq tells us how many times the tuple t appears in the instance of relation R.1

A matching database restricts the degrees of all relations such that for every tuple t over

U � rrs, we have dtpRq � 1; in other words, each value appears at most once in every relation.

To see an example of a matching database, consider a binary relation R, and assume that

each of the attributes contains the values 1, 2, . . . , n. In this scenario, a matching instance

of R contains n tuples, and essentially defines a permutation on rns, since each value of the

1Notice that our definition of the degree considers only tuples that exist in the relation, and thus the
degree can never be zero.
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(a) A depiction of a matching instance for rela-
tion Rpx, yq as a bipartite matching

1

1

2

3

4

5

6

(b) A depiction of a (maximally) skewed instance
for relation Rpx, yq

Figure 2.3: Examples for two different instances for a binary relation Rpx, yq: (a) a matching instance over
a domain of size 6, (b) a skewed instance.

first attribute maps to a unique value of the second attribute. Notice also that in a matching

relation every attribute is a key.

Matching databases are instances without data skew. Instances with skew typically have

some value, or tuple of values, that appear frequently in the instance. In this work, we do

not define an absolute notion of when a relation is skewed, since the measure of skew will be

relative to the parallelism available. To give an example of skew for the binary relation R,

consider the instance tp1, 1q, p1, 2q, . . . , p1, nq, and observe that the degree of the value 1 is

n, since 1 appears in all n tuples.

2.2 Entropy

Let us fix a finite probability space. For random variables X and Y , the entropy and the

conditional entropy are defined respectively as follows:

HpXq � �
¸
x

P pX � xq � log2 P pX � xq (2.5)

HpX | Y q �
¸
y

P pY � yq �HpX | Y � yq (2.6)
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The entropy satisfies the following two basic inequalities:

HpX | Y q ¤ HpXq
HpX, Y q � HpX | Y q �HpY q (2.7)

Assuming additionally that X has a support of size n, we have:

HpXq ¤ log2 n (2.8)

2.3 Yao’s Principle

The lower bounds that we show in this work apply not only to deterministic algorithms, but

to randomized algorithms as well. To prove lower bounds for randomized algorithms, we use

Yao’s Principle [83]. In the setting of answering conjunctive queries, Yao’s principle can be

stated as follows.

Let P be any probability space from which we choose a database instance I, such that

every deterministic algorithm fails to compute qpIq correctly with probability ¥ 1�δ. Then,

for every randomized algorithm, there exists a database instance I 1 such that the algorithm

fails to compute qpI 1q correctly with probability ¥ 1 � δ, where the probability is over the

random choices of the algorithm.

In other words, if we want to prove a lower bound for randomized algorithms, it suffices to

construct a probability distribution over instances for which any deterministic algorithm fails.

As we will see, Yao’s principle allows us to prove strong lower bounds for the communication

load, even in the case where we allow communication to take arbitrary form.

2.4 Friedgut’s Inequality

Friedgut [41] introduces a powerful class of inequalities, which will provide a useful tool for

proving lower bounds. Each inequality is described by a hypergraph, but since we work with

conjunctive queries, we will describe the inequality using query terminology (and thus the
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hypergraph will be the query hypergraph). Fix a query q as in (2.1), and let n ¡ 0. For every

atom Sjpx̄jq of arity aj, we introduce a set of naj variables wjpajq ¥ 0, where aj P rnsaj . If

a P rnsa, we denote by aj the vector of size aj that results from projecting on the variables

of the relation Sj. Let u � pu1, . . . , u`q be a fractional edge cover for q. Then:

¸
aPrnsk

¹̀
j�1

wjpajq ¤
¹̀
j�1

�
� ¸

ajPrns
aj

wjpajq1{uj
�

uj

(2.9)

We illustrate Friedgut’s inequality on the queries C3 and L3:

C3px, y, zq � S1px, yq, S2py, zq, S3pz, xq
L3px, y, z, wq � S1px, yq, S2py, zq, S3pz, wq (2.10)

Consider the cover p1{2, 1{2, 1{2q for C3, and the cover p1, 0, 1q for L3. Then, we obtain the

following inequalities, where α, β, γ stand for w1, w2, w3 respectively:

¸
x,y,zPrns

αxy � βyz � γzx ¤
d ¸

x,yPrns

α2
xy

¸
y,zPrns

β2
yz

¸
z,xPrns

γ2
zx

¸
x,y,z,wPrns

αxy � βyz � γzw ¤
¸

x,yPrns

αxy � max
y,zPrns

βyz �
¸

z,wPrns

γzw

where we used the fact that limuÑ0p
°
β

1
u
yzqu � max βyz.

Friedgut’s inequalities immediately imply a well known result developed in a series of

papers [46, 22, 63, 64] that gives an upper bound on the size of a query answer as a function

on the cardinality of the relations. For example in the case of C3, consider an instance

S1, S2, S3, and set αxy � 1 if px, yq P S1, otherwise αxy � 0 (and similarly for βyz, γzx). We

obtain then |C3| ¤
a|S1| � |S2| � |S3|. Note that all these results are expressed in terms of a

fractional edge cover. When we apply Friedgut’s inequality in Chapter 4 to a fractional edge

packing, we ensure that the packing is tight.
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Chapter 3

THE MASSIVELY PARALLEL COMPUTATION MODEL

In this chapter, we introduce the Massively Parallel Computation model (MPC), a the-

oretical model that allows us to analyze algorithms in massively parallel environments. We

first give the formal description of the model in Section 3.1, where we also discuss some

observations and simplifying assumptions. In Section 3.2, we present a comparison of the

MPC model with previous parallel models, and discuss our modeling choices along various

axes. Finally in Section 3.3, we study the connections of the MPC model with the area of

communication complexity.

3.1 The MPC Model: Computation and Parameters

In the MPC model, introduced in [23, 24], computation is performed by p servers, or pro-

cessors, connected by a complete network of private channels. Each server can communicate

with any other server in an indistinguishable way. The servers run the parallel algorithm in

communication steps, or rounds, where each round consists of two distinct phases1:

Communication Phase: The servers exchange data, each by communicating with all other

servers (both sending and receiving data).

Computation Phase: Each server performs computation on the local data it has received

during all previous rounds.

The input data of size M (in bits) is initially uniformly partitioned among the p servers,

i.e. each server stores M{p bits of the data: this describes the way the data is typically par-

1In earlier versions of our work on parallel processing [55, 12], we had a third phase called the broadcast
phase.
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titioned in any distributed storage system, for example in HDFS [71]. We do not make any

particular assumptions on whether the data is partitioned according to a specific scheme.

Thus, any parallel algorithm must work for an arbitrary data partition, while any lower

bound can use a worst-case initial distribution of the data. We should note here that spe-

cific partitioning schemes (for example hash-partitioning a relation according to a specific

attribute) can help design better parallel algorithms, but this is not something we consider

in this dissertation.

After the computation is completed, the output data is present in the union of the output

of the p servers.

The complexity of a parallel algorithm in the MPC model is captured by two basic

parameters in the computation:

The number of rounds r. This parameter captures the number of synchronization barri-

ers that an algorithm requires during execution. A smaller number of rounds means

that the algorithm can run with less synchronization.

The maximum load L. This parameter captures the maximum load among all servers at

any round, where the load is the amount of data (in bits) received by a server during

a particular round. Let Ls,k denote the number of bits that server s receives during

round k. Then, we define formally L as:

L � max
k�1,...,r

t max
s�1,...,p

Ls,ku

The reader should notice that the MPC model does not restrict or capture the running

time of the computation at each server; in other words, the servers can be as computationally

powerful as we would like. This modeling choice means that our lower bounds must be

information-theoretic, since they are based on how much data is available to each server and

not on how much computation is needed to output the desired result. On the other hand,

the algorithms that we present throughout this work are always polynomially bounded and
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round 1 round 2

communication communication

...

... ... ... ...

round rround 3

server 1

server 2

server 3

server p

computation computation computation

Figure 3.1: Figure of the execution model for MPC. The data is initially distributed among the p servers.
In each of the r rounds, the servers perform some local computation and then globally exchange data with
each other. The output is the union of the server outputs at the end of round r.

thus can be implemented in practice.

Before we discuss how the parameters we introduced interact with each other, let us give

an example of an algorithm in the MPC model and its analysis of the maximum load.

Example 3.1.1 (Set Intersection). The input consists of two sets R, S, each with m elements,

and the goal is to compute the intersection RXS of these two sets. To distribute the elements

across the p servers, we will use a hash function h : Dom Ñ t1, . . . , pu. The algorithm will

run in a single round. During the communication phase, each element Rpaq will be sent

to server hpaq, and each element Spbq to server hpbq. During the computation phase, each

server s will perform a local intersection of the elements received from relation R and S.

Clearly, an element a P RX S will be in the output, since both Rpaq, Spaq will be received by

the server hpaq.
To compute the maximum load L, we will use a probabilistic argument to analyze the

behavior of the hash function. Indeed, if we assume that h is a perfectly random hash function,
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it can be shown that the load (in number of elements, not bits) will be Opm{pq with high

probability when m " p.

Let us now discuss the interaction between the number of rounds, the input size and

the load to provide some intuition on our modeling choices. Normally, the entire data is

exchanged during the first communication round, so the load L is at least M{p. Thus, the

set intersection algorithm from the above example is asymptotically optimal. On the other

hand, if we allowed a load L � M , then any problem can solved trivially in one round by

simply sending the entire data to server 1, then computing the answer locally. In this case

though, we failed to exploit the available parallelism of the p machines. The typical loads in

most of our analyses will be of the form M{p1�ε, for some parameter 0 ¤ ε   1 that depends

on the query (we call the parameter ε the space exponent, see Subsection 4.4.2).

Observe also that if we allowed the number of rounds to reach r � p, any problem can

be solved trivially in p rounds by sending at each round M{p bits of data to server 1, until

this server accumulates the entire data. In this thesis, we will mostly focus on algorithms

that need a constant number of rounds, r � Op1q, to perform the necessary computation.

3.1.1 Computing Queries in the MPC model

In this dissertation, the main focus will be the computation of full conjunctive queries, as

defined in (2.1). As an example, for the triangle query Rpx, yq, Spy, zq, T pz, xq, we want

to output all the triangles. It is straightforward that an MPC algorithm that computes all

triangles will be able to answer the corresponding boolean query, i.e. whether there exist any

triangles, but the opposite does not hold, since computing the decision version may require

a more efficient algorithm. Computing all answers further allows us to count the answers

(for example count the number of triangles), but again the counting version of a query may

allow for a better parallel algorithm.

We discuss next two assumptions that will allow us to simplify the treatment of conjunc-

tive queries in the MPC model: the first one concerns the existence of self-joins, and the
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second the initial partitioning of the input.

Self-Joins. Instead of studying the computation of any full conjunctive query, we can focus

only on algorithms and bounds for self-join-free queries without any loss of generality.

To see this, let q be any conjunctive query, and denote q1 the query obtained from q

by giving distinct names to repeated occurrences of the same relations (hence q is self-

join-free). For example, consider the query q � Spx, yq, Spy, zq, Spz, xq, which computes all

triangles in a directed graph with edge set S. Then, q1 will be the self-join-free triangle query

S1px, yq, S2py, zq, S3pz, xq.
Clearly, if we have an MPC algorithm A1 for q1, we can apply this algorithm directly to

obtain an algorithm for q by essentially ‘copying’ the relations that appear multiple times in

the body of the query. The new algorithm will have the same load as A1 when executed on

an input that is at most ` times larger than the original input (recall that ` is the number

of relations). In our example, we would copy relation S of size M to create three replicas

S1, S2, S3, each of size M , then execute the triangle query on an input 3 times as large, and

finally obtain the output answers.

Conversely, suppose that we have an algorithm A for the query q with self-joins. We

construct an algorithm A1 for q1 as follows. Suppose that relation S has k occurrences in

q and has k distinct names S1, . . . , Sk in q1. For each atom Sipx, y, z, . . .q, algorithm A1

renames every tuple Sipa, b, c, . . .q into Spxa, xy, xb, yy, xc, zy, . . .q. That is, each value a in

the first column is replaced by the pair xa, xy, where x is the variable occurring in that

column, and similarly for all other columns. This copy operation can be performed locally

by all servers, without any additional communication cost. The resulting relation S will be

essentially a ‘union’ of the k relations, but where we remember the variable mapping for each

value. We can execute then A on the constructed input, which will be exactly the same size

as the original input. In the end, we have to perform a filtering step to return the correct

output for q1: if the head variables of q are x, y, . . . and an output tuple is pxa, uy, xb, vy, . . . q,
then the algorithm needs to check that x � u, y � v, . . . , and only then return the tuple.
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Input Partitioning. The MPC model assumes an arbitrary initial distribution of the

input relations in the p servers. Our algorithms in the next sections are able to operate with

any distribution, since they operate per tuple (and some possibly side information). In order

to show lower bounds, however, it will be convenient to use the assumption that initially

each relation Sj is stored in a separate server, called an input server. During the first round,

the input servers send messages to the p servers, but in subsequent rounds they are no longer

used in the computation. All lower bounds in this paper assume that the relations Sj are

given on separate input servers.

We next show that if we have a lower bound on the maximum load for the model with

separate input servers, the bound carries over immediately to the standard MPC model for

the class of self-join-free conjunctive queries.

Lemma 3.1.2. Let q be a self-join-free conjunctive query q with input sizes M �
pM1, . . . ,M`q. Let A be an algorithm that computes q in r rounds with load LpM, pq in

the standard MPC model. Then, there exists an algorithm A1 that computes q in the input

server model in r rounds and load LpM, pq �M{p, where M � °`
j�1Mj is the total size of

the input.

Proof. We will construct an algorithm A1 over the input server model as follows. The input

server j will take the input relation Sj, and simply split it into pMj{M chunks: each chunk

now contains M{p data, so we can simulate each of the p servers in the first round of the

MPC model. Notice that during the first round we also have to send the initial chunk of the

input relation to the corresponding server (which is the data that the server would contain

during initialization for A). In subsequent rounds ¥ 2, algorithm A1 behaves exactly the

same as algorithm A. We can observe now that algorithm A1 requires r rounds, and achieves

a load of LpM, pq �M{p.

Say that we show a lower bound LpM, pq for the input server model such that LpM, pq ¥
2M{p (this assumption holds for every lower bound that we show, since intuitively the input

must be distributed once among the servers to do any computation). From the above result,
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this implies that every algorithm for the standard MPC model using the same number of

rounds requires a load of at least LpM, pq{2. Thus, it suffices to prove our lower bounds

assuming that each input relation is stored in a separate input server. Observe that this

model is even more powerful, because an input server has now access to the entire relation

Sj, and can therefore perform some global computation on Sj, for example compute statistics,

find outliers, etc., which are common in practice.

3.1.2 The tuple-based MPC model

The MPC model, as defined in the previous sections, allows arbitrary communication among

the servers at every round, which makes the theoretical analysis of multi-round algorithms

a very hard task. Thus, in order to show lower bounds for the case of multiple rounds, we

will need to restrict the form of communication in the MPC model; to do this, we define a

restriction of the MPC model that we call the tuple-based MPC model. More precisely, the

tuple-based MPC model will impose a particular structure on what kind of messages can be

exchanged among the servers.

Let I be the input database instance, q be the query we want to compute, and A an

algorithm. For a server s P rps, we denote by msg1
jÑspA, Iq the message sent during round 1

by the input server for Sj to the server s, and by msgksÑs1pA, Iq the message sent to server

s1 from server s at round k ¥ 2. Let msg1
spA, Iq � pmsg1

1ÑspA, Iq, . . . ,msg1
`ÑspA, Iqq and

msgkspA, Iq � pmsgk1ÑspA, Iq, . . . ,msgkpÑspA, Iqq for any round k ¥ 2.

Further, we define msg¤ks pA, iq to be the vector of messages received by server s during

the first k rounds, and msg¤kpA, iq � pmsg¤k1 pA, iq, . . . ,msg¤kp pA, iqq.
Define a join tuple to be any tuple in q1pIq, where q1 is any connected subquery of

q. An algorithm A in the tuple-based MPC model has the following two restrictions on

communication during rounds k ¥ 2, for every server s

• the message msgksÑs1pA, Iq is a set of join tuples.

• for every join tuple t, the server s decides whether to include t in msgksÑs1pA, Iq based
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only on the parameters t, s, s1, r, and the messages msg1
jÑspA, Iq for all j such that t

contains a base tuple in Sj.

The restricted model still allows unrestricted communication during the first round; the

information msg1
spA, Iq received by server s in the first round is available throughout the

computation. However, during the following rounds, server s can only send messages con-

sisting of join tuples, and, moreover, the destination of these join tuples can depend only on

the tuple itself and on msg1
spA, Iq.

The restriction of communication to join tuples (except for the first round during which

arbitrary, e.g. statistical, information can be sent) is natural and the tuple-based MPC

model captures a wide variety of algorithms including those based on MapReduce. Since

the servers can perform arbitrary inferences based on the messages that they receive, even a

limitation to messages that are join tuples starting in the second round, without a restriction

on how they are routed, would still essentially have been equivalent to the fully general MPC

model. For example, any server wishing to send a sequence of bits to another server can

encode the bits using a sequence of tuples that the two exchanged in previous rounds, or

(with slight loss in efficiency) using the understanding that the tuples themselves are not

important, but some arbitrary fixed Boolean function of those tuples is the true message

being communicated. This explains the need for the condition on routing tuples that the

tuple-based MPC model imposes.

3.2 Comparison of MPC to other Parallel Models

In this section, we present several theoretical models that have been developed for parallel

computation, and compare them with the MPC model, noting both the modeling similarities

and differences. We will discuss only models that capture shared-nothing architectures [76]:

in such an architecture, every machine has its own memory and there is no shared memory

available. This does not include for example the first parallel model, the Parallel Random-

Access Machine (PRAM) model, where a number of processors share an unbounded memory
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and can operate in a synchronous way on a shared input. 2 Further, we discuss models

that are synchronous, in the sense that the computation and communication proceeds in

well-defined rounds. The comparison will be across five different axes:

1. Number of servers. The number of servers can be an explicit parameter (as in the

MPC model), or it can be chosen by the algorithm according to the input data.

2. Number of rounds. This parameter counts the number of rounds, or synchronization

barriers, during computation. Reducing the number of steps is important in terms of

performance, because of the overhead of synchronization and the presence of stragglers,

which are machines that finish slower than the rest.

3. Memory bound. This parameter models how much memory is available to each server,

or how much data (load) each server is allowed to receive during computation. This

restriction captures the parallelism in computation: the smaller the amount of data

each server receives, the more parallel the task is.

4. Communication. This parameter captures how much data is exchanged during the

communication between servers. There are many different ways communication is

modeled: one can choose to count the total amount of data exchanged, or model it

indirectly by looking at the number of servers and the memory bound.

5. Computation. Some models require that the computation is polynomial, or that the

running time is counted towards measuring the parallel complexity.

The BSP Model. To address some of the issues of the PRAM model, Valiant [77] intro-

duced the Bulk Synchronous Parallel (BSP) model. A BSP algorithm runs in supersteps:

each superstep consists of local computation and asynchronous communication, followed by

a synchronization barrier. The BSP model abstracts the communication in every superstep

by introducing the notion of the h-relation, which is defined as a communication pattern

where the maximum number of incoming or outgoing messages per machine is h. The cost

2Immerman showed in [51] that computing an expression in first-order logic (and thus evaluating con-
junctive queries) requires constant time in PRAM, earning the name ”embarrassingly parallel”.



26

of a superstep i consists of three components: the cost of synchronization (a constant `), the

communication cost hi (the size of the hi-relation) and the computation cost wi (measured

as the longest running local computation). The cost of a BSP algorithm is computed as a

weighted sum of these terms over all steps:
°
ipwi � ghi � `q.

The MPC model is similar to the BSP model, but we remove the computation cost from

consideration, and also do not allow any form of asynchronous communication; this allows

us to prove lower bounds on the cost by using information-theoretic arguments. Moreover,

instead of measuring the total communication
°
i hi over all supersteps, the MPC model

considers the largest value of hi, which the load L.

Related to the BSP model is the CONGEST model [42] for distributed computing; the

difference between the two models is that the CONGEST model considers a communication

graph that may not be a full clique, as in the BSP model.

The LogP Model. The LogP model, introduced in [36], builds on the BSP model by

using more system parameters to model the execution. L denotes the latency of the com-

munication medium, o the overhead of sending and receiving a message, g denotes the gap

required between two send/receive operation, and finally P is the number of processing units.

Following the introduction of the MapReduce model [37], several theoretical models were

introduced in the literature to capture computation in this setting. MapReduce is a restricted

version of the BSP model, where synchronization occurs at every step, and uses a simple

programming model inspired by functional programming. In its vanilla version, the user

defines two functions: map and reduce. The map function is applied on a single data item

x of the input and returns a key-value pair pk, vq. The reduce function is applied to a list of

items with the same key, pk, rv1, . . . , vmsq and returns a new list of values. During runtime,

the system applies in parallel the map function, then performs a shuffle step that collects all

key-value pairs with the same key to the same location (reducer); finally, the reduce function

is applied in parallel to each key-group.
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The MRC model. In order to capture computation in the MapReduce framework, the

authors in [54] define the MapReduce class (MRC) of algorithms. Denoting by M the size of

the input in bits, the model restricts both the memory per reducer/machine and the number

of machines/reducers to OpM1�εq, for some constant ε ¡ 0. Observe that this means that

the number of machines (or reducers in their case) is not explicitly defined. The machines

can perform only polynomial time computations, and further the number of rounds must

be limited to OplogcpMqq for some constant c. In a related work [45], the authors use an

explicit parameter B to bound the memory of each reducer, and use the total amount of

communication C and number of rounds R as parameters that capture the complexity of a

MapReduce algorithm.

Both works do not consider problems related to query processing, but tasks such as

sorting or the Minimum Spanning Tree problem. Moreover, they provide no lower bounds

on the communication or round complexity.

The Afrati-Ullman model. In [14], Afrati and Ullman develop a model for MapReduce

where the main parameter is an upper bound q on the number of input tuples a reducer

can receive, called reducer size; this is the same as the memory per node. Given an input

of size M , a MapReduce algorithm is restricted to deterministically send each input tuple

independently to some reducer, which will then produce all the outputs that can be extracted

from the received tuples. If qi ¤ q is the number of inputs assigned to the i-th reducer, where

i � 1, . . . , p, the replication rate of the algorithm is r � °p
i�1 qi{M . The replication rate

captures the communication cost of the algorithm.

In previous works [15, 10], the authors considered the total communication as the com-

plexity measure instead of the memory per machine, and studied the problems of multiway

joins and enumeration of subgraph patterns in a graph. The authors study the tradeoff

between r and q for various settings, including Hamming distance (see also [13] for a deeper

investigation of Hamming distance algorithms), matrix multiplication, triangle finding, and

multiway joins. In particular, the problem of enumerating and/or counting triangles has
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MPC BSP MRC Afrati/Ullman

#servers p p OpM1�εq N/A

#rounds r r OplogcpMqq 1 or 2

memory bound bits received L N/A OpM1�εq reducer size q

communication ¤ rpL
°
i hi OpM2�2εq replication rate r

computation N/A
°
iwi polynomial N/A

Table 3.1: Side-by-side comparison of several parameters for the theoretical parallel models.

been one of the most common problems studied in parallel environments. Suri and Vassil-

vitskii [73] present two algorithms for triangle counting in a MapReduce environment. We

should also mention here the work in [11], where the authors use the same MapReduce model

to study multi-round algorithms for join processing.

To complete the discussion on parallel models, we should finally mention the MUD

model [40] (which stands for Massive, Unordered and Distributed). The MUD model defines

a general distributed computational model that attempts to capture computation in the

MapReduce framework; the main result of [40] is that any deterministic streaming algorithm

that computes a symmetric function can be simulated by a MUD algorithm with the same

total communication cost.

3.3 Communication Complexity

We discuss here the relation of the MPC model with the theoretical study of communication

complexity; we refer to [56] for a detailed treatment of this area. Communication complex-

ity considers the following scenario: a number of cooperating agents, each with unlimited

computational power, need to solve some specific computational problem, but initially know

only a part of the input. The goal is to find the optimal amount of communication needed
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(in bits) to solve the problem.

There are many versions of this problem, depending on the number of agents, whether

randomization is used or how the input is distributed among the agents, but the model

closer to MPC is Number-In-Hand (NIH) multiparty communication complexity (see [68] for

example), where initially each agent receives a part of the input that is not shared with any

other agent. Although several computational tasks have been considered in this model, such

as set-disjointness or string equality, query processing has not been much studied. It should

be noted here that lower bounds for NIH communication complexity are extensively used

to obtain results in other areas, such as lower bounds on the space requirements for data

streaming algorithms (e.g. [18]).

There are three variations on the communication mode that is being used. In the black-

board model, any message sent by an agent is written to a blackboard visible to all other

agents. In the coordinator model, an additional agent, called the coordinator, receives no

input, but all agents can communicate only with the coordinator and not with each other

directly. In both of these modes, at least one agent has access to all communication among

agents; hence, any computational task with input of size M and output of size O can be

computed using no more than M�O bits of communication. The third mode is the message-

passing model, where there is a private 2-way communication channel connecting any two

agents, and every message is privately sent to a specific agent. There has been a recent line

of work ([80, 30]) investigating the communication complexity of several tasks in this setting.

In [80], the authors investigate various statistical and graph problems (such as connectivity,

bipartiteness, degree computation), and show that for most tasks the simple algorithm of

communicating all data to a single location is almost optimal. In [30], the authors study the

problem of set intersection, which can be seen as a case of join computation.

Since the communication in the MPC model is point-to-point private communication,

the more related mode is the message passing model. However, there is still a key difference:

the MPC model measures the communication per agent/machine and per round instead of

measuring the total communication. As a result, in many of the computational tasks we
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analyze in the next sections, we obtain lower bounds were the total communication is of the

form M1�δ, which is much larger than a protocol in the NIH model would require. Thus, by

measuring communication in a more fine-grained way, we can obtain stronger lower bounds.

To complete the discussion on communication complexity, we should also mention the

work in [47], where the authors examine the 2-party NIH communication complexity for

distributed set-joins, which includes multiway joins as a special case.



31

Chapter 4

COMPUTING JOIN QUERIES IN ONE STEP WITHOUT
SKEW

In this chapter, we present the main result of this dissertation. We study the complexity

of computing conjunctive queries in the MPC model for a single communication round under

the assumption that the input data has no skew. We show that under this assumption, there

exists an algorithm, called the HyperCube algorithm, that computes any conjunctive query

by achieving the optimal load.

Recall that we represent a full conjunctive query q as:

qpx1, . . . , xkq � S1px̄1q, . . . , S`px̄`q

where k is the number of variables and ` is the number of atoms. Throughout this chapter,

we will assume that the input servers know the cardinalities m1, . . . ,m` of the relations

S1, . . . , S`. We denote m � pm1, . . . ,m`q the vector of cardinalities, and M � pM1, . . . ,M`q
the vector of the sizes expressed in bits, where Mj � ajmj log n, n is the size of the domain

of each attribute, and aj the arity of each atom.

Given the size information, how well can an algorithm do in a single communication

round? The central result we show is that a particular type of algorithm, which we call the

HyperCube algorithm, if parametrized correctly can achieve optimal load for any conjunc-

tive query q. However, our result does not hold for any input data, but for data without

skew. We will give a precise definition of skew later in this chapter, but intuitively no skew

means that no value in the input data appears many times.

Recall that a database is a matching database if each relation has degree bounded by 1

(i.e. the frequency of each value is exactly 1 for each relation). Our lower bounds hold for
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an input distribution that consists of such matching databases. One can view a matching

database as input with the least amount of skew possible. The upper bound, and in particular

the load analysis for the HyperCube algorithm, hold not only for matching databases,

but in general for databases with a small amount of skew, which we will formally define

in Section 4.1. This means that the HyperCube algorithm has some resilience in skew, and

we can quantify exactly how much this resilience is.

4.1 The HyperCube Algorithm

We describe here the HyperCube algorithm, which we will use to compute any conjunctive

query in one round. This algorithm was introduced by Afrati and Ullman [9] in a MapReduce

setting, and is similar to an algorithm by Suri and Vassilvitskii [73] to count the number

of triangles in graphs. The idea though can be traced much earlier in time, to a work by

Ganguly [43] on parallel processing of Datalog programs. We call this the HyperCube

(HC) algorithm, following [23], but it can also be found in the literature as the Shares

algorithm [9].

The algorithm is simple in principle, and the core idea is to perform communication by

doing a smart routing of the input tuples. The communication phase of the algorithm is

highly distributed, since the destination of each input tuple depends only on the content of

the specific tuple, the size M of the relations and the query q. Thus, the algorithm can be

easily implemented in almost any distributed or parallel computing environment.

The HC Algorithm. We initially assign to each variable xi, where i � 1, . . . , k, a share

pi, such that
±k

i�1 pi � p. Each server is then represented by a distinct point y P P , where

P � rp1s � � � � � rp2s; in other words, servers are mapped into points of a k-dimensional

hypercube.1

• Communication: We use k independently chosen hash functions hi : rns Ñ rpis and

1This is where the algorithm takes its name from.
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send each tuple t of relation Sj to all servers in the destination subcube of t:

Dptq � ty P P | @m � 1, . . . , aj : himptrimsq � yimu (4.1)

• Computation: Each server locally computes the query q for the subset of the input

that it has received.

The correctness of the HC algorithm follows from the observation that, for every potential

tuple pa1, . . . , akq, the server ph1pa1q, . . . , hkpakqq contains all the necessary information to

decide whether it belongs in the answer or not. Observe also that the choice of p1, . . . , pk

gives a different parametrization of the HC algorithm.

Example 4.1.1. We illustrate how to compute the triangle query

C3px1, x2, x3q � S1px1, x2q, S2px2, x3q, S3px3, x1q.

Consider the following choice of shares: p1 � p2 � p3 � p1{3. Each of the p servers is

uniquely identified by a triple py1, y2, y3q, where y1, y2, y3 P rp1{3s. In the first communica-

tion round, the input server storing S1 sends each tuple S1pα1, α2q to all servers with index

ph1pα1q, h2pα2q, y3q, for all y3 P rp1{3s: notice that each tuple is replicated p1{3 times. The

input servers holding S2 and S3 proceed similarly with their tuples. After round 1, any three

tuples S1pα1, α2q, S2pα2, α3q, S3pα3, α1q that contribute to the output tuple C3pα1, α2, α3q will

be seen by the server y � ph1pα1q, h2pα2q, h3pα3qq: any server that detects three matching

tuples outputs them.

Analysis of the HC algorithm. In order to analyze the load of the HC algorithm, we first

have to study how a relation R is partitioned among the p servers during communication.

Our first analysis of the HC algorithm in [23] was only for the special case of matching

databases, where the degree of each value is exactly one. In a later work [24], the analysis

was extended for relations with larger degrees. We present here the most general result, in
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other words we specify the largest possible degree for which the distribution of the tuples

will not be influenced by skew. The analysis is based on the following lemma about hashing,

which we prove in detail in Section A.2.

Lemma 4.1.2. Let RpA1, . . . , Arq be a relation of arity r of size m. Let p1, . . . , pr be integers

and let p �±i pi. Suppose that we hash each tuple pa1, . . . , arq to the bin ph1pa1q, . . . , hrparqq,
where h1, . . . , hr are independent and perfectly random hash functions from the domain n to

p1, . . . , pr respectively. Then:

1. The expected load in every bin is m{p.

2. Suppose that for every tuple J over U � rrs we have dJpRq ¤ m
α|U |

±
iPU pi

for some

constant α ¡ 0. Then the probability that the maximum load exceeds Õpm{pq is expo-

nentially small in p.2

Using the above lemma, we can now prove the following statement on the behavior of

the HC algorithm.

Corollary 4.1.3. Let p � pp1, . . . , pkq be the shares of the HC algorithm. Suppose that for

every relation Sj and every tuple J over U � rajs we have dJpSjq ¤ mj

α|U |
±

iPU pi
for some

constant α ¡ 0. Then with high probability the maximum load per server is

Õ

�
max
j

Mj±
i:iPSj

pi

�

Choosing the Shares. We have not discussed yet how to choose the best shares for the

HC algorithm. The above analysis provided us with a tool that allows us to make the best

possible choice. Afrati and Ullman in [9] compute the shares by optimizing the total load°
jmj{

±
i:iPSj

pi subject to the constraint
±

i pi � 1, which is a non-linear system that can

be solved using Lagrange multipliers. Our approach is to optimize the maximum load per

relation, L � maxjmj{
±

i:iPSj
pi; the total load per server is ¤ `L. This leads to a linear

2The notation Õ hides logppq factors.
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optimization problem, as follows. First, write the shares as pi � pei where ei P r0, 1s is called

the share exponent for xi, denote λ � logp L and µj � logpMj (we will assume w.l.o.g. that

Mj ¥ p, hence µj ¥ 1 for all j). Then, we optimize the LP:

minimize λ

subject to
¸
iPrks

�ei ¥ �1

@j P r`s :
¸
iPSj

ei � λ ¥ µj

@i P rks :ei ¥ 0, λ ¥ 0 (4.2)

Theorem 4.1.4 (Upper Bound). For a query q and p servers, with statistics M, let e �
pe1, . . . , ekq be the optimal solution to (4.2) and e� its objective value.

Let pi � pei and suppose that for every relation Sj and every tuple J over U � rajs we

have dJpSjq ¤ mj

α|U |
±

iPU pi
for some constant α ¡ 0. Then the HC algorithm with shares pi

achieves ÕpLupperq maximum load with high probability, where Lupper � pe
�
.

A special case of interest is when all cardinalities Mj are equal, therefore µ1 � . . . � µ` �
µ. In that case, the optimal solution to Eq.(4.2) can be obtained from an optimal fractional

vertex cover v� � pv�1 , . . . , v�kq by setting ei � v�i {τ� (where τ� � °i v
�
i ). To see this, we note

that any feasible solution pλ, e1, . . . , ekq to Eq.(4.2) defines the vertex cover vi � ei{pµ� λq,
and in the opposite direction every vertex cover defines the feasible solution ei � vi{p

°
i viq,

λ � µ� 1{p°i viq; further more, minimizing λ is equivalent to minimizing
°
i vi. Thus, when

all cardinalities are equal to M , at optimality λ� � µ� 1{τ�, and Lupper �M{p1{τ� .

We illustrate more examples in Section 4.3.

4.2 The Lower Bound

In this section, we prove a lower bound on the maximum load per server over databases with

statistics M.
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Fix a query q and a fractional edge packing u of q. Denote:

Lpu,M, pq �
�±`

j�1M
uj
j

p

�1{
°

j uj

(4.3)

Further denote Llower � maxu Lpu,M, pq, where u ranges over all edge packings for q. In

this section, we will prove that Eq.(4.3) is a lower bound for the load of any algorithm

computing the query q, over a database with statistics M. We will prove in Section 4.3

that Llower � Lupper, showing that the upper bound and lower bound are tight. To gain

some intuition behind the formula (4.3), consider the case when all cardinalities are equal,

M1 � . . . �M` �M . Then Llower �M{p1{
°

j uj , and this quantity is maximized when u is a

maximum fractional edge packing, whose value is τ�, the fractional vertex covering number

for q. Thus, Llower �M{p1{τ� , which is the same expression as Lupper.

To prove the lower bound, we will define a probability space from which the input

databases are drawn. Notice that the cardinalities of the ` relations are fixed: m1, . . . ,m`.

We first choose a domain size n ¥ maxjmj, to be specified later, and choose independently

and uniformly each relation Sj from all matchings of rnsaj with exactly mj tuples. We

call this the matching probability space. Observe that the probability space contains only

databases with relations without skew (in fact all degrees are exactly 1). We write Er|qpIq|s
for the expected number of answers to q under the above probability space.

Theorem 4.2.1 (Lower Bound). Fix statistics m, and consider any deterministic MPC

algorithm that runs in one communication round on p servers. Let u be any fractional edge

packing of q. If s is any server and Ls is its load, then server s reports at most

L
°

j uj
s

p°j uj{4q
°

j uj
±`

j�1M
uj
j

� Er|qpIq|s

answers in expectation, where I is a randomly chosen from the matching probability space

with statistics m and domain size n � pmaxjmjq2. Therefore, the p servers of the algorithm
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report at most �
4L

p°j ujq � Lpu,M, pq

�°
j uj

� Er|qpIq|s

answers in expectation, where L � maxsPrps Ls is the maximum load of all servers.

Furthermore, if if all relations have equal size m1 � . . . � m` � m and arity aj ¥ 2, then

one can choose n � m, and strengthen the number of answers reported by the p servers to:

�
L

p°j ujq � Lpu,M, pq

�°
j uj

� Er|qpIq|s

Therefore, if u is any fractional edge packing, then p°j ujq � Lpu,M, pq{4 is a lower

bound for the load of any algorithm computing q. Up to a constant factor, the strongest

such lower bound is given by u�, the optimal solution for Eq.(4.3), since for any u, we have

p°j ujq � Lpu,M, pq{4 ¤ rp°j ujq{p
°
j u

�
j qs � rp

°
j u

�
j q � Llower{4s, and p°j ujq{p

°
j u

�
j q ¤ τ� �

Op1q (since
°
j uj ¤ τ� and, at optimality,

°
j u

�
j ¥ 1).

Before we prove the theorem, we show how to extend it to a lower bound for any ran-

domized algorithm. For this, we start with a lemma that we also need later.

Lemma 4.2.2. The expected number of answers to q is Er|qpIq|s � nk�a
±`

j�1mj. In par-

ticular, if n � m1 � � � � � m` then Er|qpIq|s � nc�χpqq, where c is the number of connected

components of q.

Proof. For any relation Sj, and any tuple aj P rnsaj , the probability that Sj contains aj is

P paj P Sjq � mj{naj . Given a tuple a P rnsk of the same arity as the query answer, let aj

denote its projection on the variables in Sj. Then:

Er|qpIq|s �
¸

aPrnsk

P p
©̀
j�1

paj P Sjqq �
¸

aPrnsk

¹̀
j�1

P paj P Sjq

�
¸

aPrnsk

¹̀
j�1

mjn
�aj � nk�a

¹̀
j�1

mj
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We now can prove a lower bound for the maximum load of any randomized algorithm,

on a fixed database instance.

Theorem 4.2.3. Consider a connected query q with fractional vertex covering number τ�.

Fix some database statistics M. Let A be any one round, randomized MPC algorithm A

for q, with maximum load L ¤ δ � Llower, for some constant δ   1{p4 � 9τ
�q. Then there

exists an instance I such that the randomized algorithm A fails to compute qpIq correctly

with probability ¡ 1� 9p4δq1{τ� � Ωp1q

Proof. We use Yao’s principle, which we defined in Section 2.3. To apply the principle,

we need to choose the right probability space over database instances I. The space of

random matchings is not useful for this purpose, because for a connected query with a large

characteristic χpqq, Er|qpIq|s � Op1{nq and therefore P pqpIq � Hq � Op1{nq, which means

that a naive deterministic algorithm that always returns the empty answer with fail with

a very small probably, Op1{nq. Instead, denoting µ � Er|qpIq|s, we define Cα the event

|qpIq| ¡ αµ, where α ¡ 1 is some constant. We will apply Yao’s principle to the probability

space of random matchings conditioned on Cα.

We prove that, for α � 1{3, any deterministic algorithm A fails to compute qpIq correctly

with probability ¥ 1� 9p4δq1{τ� , over random matchings conditioned on C1{3. Let u� be an

edge packing that maximizes Lpu,M, pq, and denote f �
�

4L
p
°

j u
�
j q�L

lower

	°
j u

�
j

. Lemma 4.2.2

implies that that, for any one-round deterministic algorithm with load ¤ L, Er|ApIq|s ¤
fEr|qpIq|s. We prove the following in Section A.1:

Lemma 4.2.4. If A is a deterministic algorithm for q (more precisely: @I, ApIq � qpIq),

such that, over random matchings, Er|ApIq|s ¤ fEr|qpIq|s for some constant f   1{9, then,

denoting fail the event ApIq � qpIq, we have

P pfail|C1{3q ¥1� 9f
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The proof of the theorem follows from Yao’s principle and the fact that f ¤�
4δ°
j u

�
j

	1{
°

j u
�
j ¤ p4δq1{τ� because

°
j u

�
j ¤ τ� and, at optimality,

°
j u

�
j ¥ 1.

In the rest of this section, we give the proof of Theorem 4.2.1.

Let us fix some server s P rps, and let msgpIq denote the function specifying the message

the server receives on input I. Recall that, in the input-sever model, each input relation Sj

is stored at a separate input server, and therefore the message received by s consists of `

separate message msgj � msgjpSjq, for each j � 1, . . . , `. One should think of msgj is a bit

string. Once the server s receives msgj it “knows” that the input relation Sj is in the set

tSj | msgjpSjq � msgju. This justifies the following definition: given a message msgj, the set

of tuples known by the server is:

Kmsgj
pSjq � tt P rnsaj | for all instances Sj � rnsaj ,msgjpSjq � msgj ñ t P Sju

where aj is the arity of Sj.

Clearly, an algorithm A may output a tuple a P rnsk as answer to the query q iff, for

every j, aj P Kmsgj
pSjq for all j � 1, . . . , `, where aj denotes the projection of a on the

variables in the atom Sj.

We will first prove an upper bound for each |Kmsgj
pSjq| in Section 4.2.1. Then in

Section 4.2.2 we use this bound, along with Friedgut’s inequality, to establish an upper

bound for |Kmsgpqq| and hence prove Theorem 4.2.1.

4.2.1 Bounding the Knowledge of Each Relation

Let us fix a server s, and an input relation Sj. Recall that Mj � mj log n denotes the number

of bits necessary to encode Sj. An algorithm A may use few bits,Mj, by exploiting the fact

that Sj is a uniformly chosen aj-dimensional matching. There are precisely
�
n
mj

�ajpmj!qaj�1

different aj-dimensional matchings of arity aj and size mj and thus the number of bits N
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necessary to represent the relation is given by the entropy:

Mj � HpSjq � aj log

�
n

mj



� paj � 1q logpmj!q (4.4)

We will prove later that Mj � ΩpMjq. The following lemma provides a bound on the

expected knowledge Kmj
pSjq the server may obtain from Sj:

Lemma 4.2.5. Suppose that the size of Sj is mj ¤ n{2 (or mj � n), and that the message

msgjpSjq has at most fj �Mj bits. Then Er|Kmsgj
pSjq|s ¤ 2fj �mj (or ¤ fj �mj), where the

expectation is taken over random choices of the matching Sj.

It says that, if the message msgj has only a fraction fj of the bits needed to encode Sj,

then a server receiving this message knows, in expectation, only a fraction 2fj of the mj

tuples in Sj. Notice that the bound holds only in expectation: a specialized encoding may

choose to use very few bits to represent a particular matching Sj � rnsaj : when a server

receives that message, then it knows all tuples in Sj, however then there will be fewer bit

combinations left to encode the other matchings Sj.

Proof. The entropy HpSjq in Eq.(4.4) has two parts, corresponding to the two parts needed

to encode Sj: for each attribute of Sj we need to encode a subset � rns of size mj, and for

each attribute except one we need to encode a permutation over rmjs. Fix a value msgj of

the message received by the server from the input Sj, and let k � |Kmsgj
pSjq|. Since msgj

fixes precisely k tuples of Sj, the conditional entropy HpSj|msgjpSjq � msgjq is:

log |tSj | msgjpSjq � msgju| ¤ aj log

�
n� k
mj � k



� paj � 1q logppmj � kqq!q

We will next show that

log |tSj | msgjpSjq � msgju| ¤
�

1� k

2mj



Mj (4.5)
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In other words, we claim that the entropy has decreased by at least a fraction k{p2mjq. We

show this by proving that each of the two parts of the entropy decreased by that amount:

Proposition 4.2.6. log ppm� kq!q ¤ �1� k
m

�
logpm!q

Proof. Since logpxq is an increasing function, it holds that
°m�k
i�1 plogpiq{pm � kqq ¤°m

i�1plogpiq{mq, which is equivalent to:

logppm� kq!q
logpm!q ¤ m� k

m

This proves the claim.

Proposition 4.2.7. For any k ¤ m ¤ n{2, or k ¤ m � n:

log

�
n� k
m� k



¤
�

1� k

2m



log

�
n

m




Proof. If m � n then the claim holds trivially because both sides are 0, so we assume

m ¤ n{2. We have:

�
n�k
m�k

�
�
n
m

� � m � pm� 1q � � � pm� k � 1q
n � pn� 1q � � � pn� k � 1q ¤

�m
n

	k

and therefore:

log

�
n� k
m� k



¤ log

�
n

m



� k logpn{mq �

�
1� k logpn{mq

log
�
n
m

�
�

log

�
n

m




To conclude the proof, it suffices to show that log
�
n
m

� ¤ 2m logpn{mq. For this, we

use the bound log
�
n
m

� ¤ nHpm{nq, where Hpxq � �x logpxq � p1 � xq logp1 � xq is the

binary entropy. Denote fpxq � �x logpxq, therefore Hpxq � fpxq � fp1� xq. Then we have

fpxq ¤ fp1 � xq for x ¤ 1{2, because the function gpxq � fpxq � fp1 � xq is concave (by

direct calculation, g2pxq � �1{x � 1{p1 � xq ¤ 0 for x P r0, 1{2s), and gp0q � gp1{2q � 0,
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meaning that gpxq ¥ 0 on the interval x P r0, 1{2s. Therefore, Hpxq ¤ 2fpxq, and our claim

follows from:

log

�
n

m



¤ nHpm{nq ¤ 2nfpm{nq � 2m logpn{mq

This concludes the proof of Proposition 4.2.7.

Now we will use Eq.(4.5) to complete the proof of Lemma 4.2.5. We apply the chain

rule for entropy, HpSj,msgjpSjqq � HpmsgjpSjqq � HpSj|msgjpSjqq, then use the fact that

HpSj,msgjpSjqq � HpSjq (since Sj completely determines msgjpSjq) and apply the definition

of HpSj|msgjpSjqq:

HpSjq � HpmsgjpSjqq �
¸

msgj

P pmsgjpSjq � msgjq �HpSj|msgjpSjq � msgjq

¤ fj �HpSjq �
¸

msgj

P pmsgjpSjq � msgjq �HpSj|msgjpSjq � msgjq assumption

¤ fj �HpSjq �
¸

msgj

P pmsgjpSjq � msgjq � p1�
|Kmsgj

pSjq|
2mj

qHpSjq Eq.(4.5)

� fj �HpSjq � p1�
¸

msgj

P pmsgjpSjq � msgjq
|Kmsgj

pSjq|
2mj

qHpSjq

� fj �HpSjq � p1�
Er|KmsgjpSjqpSjq|s

2mj

qHpSjq (4.6)

where the first inequality follows from the assumed upper bound on |msgjpSjq|, the second

inequality follows by (4.5), and the last two lines follow by definition. Dividing both sides of

(4.6) by HpSjq since HpSjq is not zero and rearranging we obtain the required statement.

4.2.2 Bounding the Knowledge of the Query

We use now Lemma 4.2.5 to derive an upper bound on the number of answers to qpIq that a

server s can report. Recall that Lemma 4.2.5 assumed that the message msgjpSjq is at most
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a fraction fj of the entropy of Sj. We do not know the values of fj, instead we know that

the entire msgpIq received by the server s (the concatenation of all ` messages msgjpSjq) has

at most L bits. For each relation Sj, define

fj �
maxSj�rns

aj |msgjpSjq|
Mj

.

Thus, fj is the largest fraction of bits of Sj that the server receives, over all choices

of the matching Sj. We immediately derive an upper bound on the fj’s. We have°`
j�1 maxSj

|msgjpSjq| ¤ L, because each relation Sj can be chosen independently, which

implies
°`
j�1 fjMj ¤ L.

For aj P rnsaj , let wjpajq denote the probability that the server knows the tuple aj.

In other words wjpajq � P paj P KmsgjpSjqpSjqq, where the probability is over the random

choices of Sj.

Lemma 4.2.8. For any relation Sj:

(a) @aj P rnsaj : wjpajq ¤ mj{naj , and

(b)
°

ajPrns
aj wjpajq ¤ 2fj �mj.

Proof. To show (a), notice that wjpajq ¤ P paj P Sjq � mj{naj , while (b) follows from the

fact
°

ajPrns
aj wjpajq � Er|KmsgjpSjqpSjq|s ¤ 2fj �mj (Lemma 4.2.5 ).

Since the server receives a separate message for each relation Sj, from a distinct input

server, the events a1 P Kmsg1
pS1q, . . . , a` P Kmsg`

pS`q are independent, hence:

Er|KmsgpIqpqq|s �
¸

aPrnsk

P pa P KmsgpIqpqqq �
¸

aPrnsk

¹̀
j�1

wjpajq

We now use Friedgut’s inequality. Recall that in order to apply the inequality, we need to

find a fractional edge cover. Let us pick any fractional edge packing u � pu1, . . . , u`q. Given
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q, defined as in (2.1), consider the extended query, which has a new unary atom for each

variable xi:

q1px1, . . . , xkq � S1px̄1q, . . . , S`px̄`q, T1px1q, . . . , Tkpxkq

For each new symbol Ti, define u1i � 1�°j:xiPvarspSjq
uj. Since u is a packing, u1i ¥ 0. Let us

define u1 � pu11, . . . , u1kq.

Lemma 4.2.9. (a) The assignment pu,u1q is both a tight fractional edge packing and a tight

fractional edge cover for q1. (b)
°`
j�1 ajuj �

°k
i�1 u

1
i � k

Proof. (a) is straightforward, since for every variable xi we have u1i �
°
j:xiPvarspSjq

uj � 1.

Summing up:

k �
ķ

i�1

�
�u1i � ¸

j:xiPvarspSjq

uj

�
� ķ

i�1

u1i �
`̧

j�1

ajuj

which proves (b).

We will apply Friedgut’s inequality to the extended query q1. Set the variables wp�q used

in Friedgut’s inequality as follows:

wjpajq �Ppaj P KmsgjpSjqpSjqq for Sj, tuple aj P rnsaj

w1
ipαq �1 for Ti, value α P rns

Recall that, for a tuple a P rnsk we use aj P rnsaj for its projection on the variables in Sj;

with some abuse, we write ai P rns for the projection on the variable xi. Assume first that

uj ¡ 0, for j � 1, . . . , `. Then:

Er|Kmsgpqq|s �
¸

aPrnsk

¹̀
j�1

wjpajq
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�
¸

aPrnsk

¹̀
j�1

wjpajq
k¹
i�1

w1
ipaiq

¤
¹̀
j�1

�
� ¸

aPrnsaj

wjpaq1{uj
�

uj

k¹
i�1

�
� ¸
αPrns

w1
ipαq1{u

1
i

�

u1i

�
¹̀
j�1

�
� ¸

aPrnsaj

wjpaq1{uj
�

uj

k¹
i�1

nu
1
i

Note that, since w1
ipαq � 1 we have w1

ipαq1{u1i � 1 even if u1i � 0. Write wjpaq1{uj �
wjpaq1{uj�1wjpaq, and use Lemma 4.2.8 to obtain:

¸
aPrnsaj

wjpaq1{uj ¤ pmj{najq1{uj�1
¸

aPrnsaj

wjpaq

¤ pmjn
�ajq1{uj�12fj �mj

� 2fj �m1{uj
j � npaj�aj{ujq

Plugging this in the bound, we have shown that:

Er|Kmsgpqq|s ¤
¹̀
j�1

p2fj �m1{uj
j � npaj�aj{ujqquj �

k¹
i�1

nu
1
i

�
¹̀
j�1

p2fjquj �
¹̀
j�1

mj � np
°`

j�1 ajuj�aq � n
°k

i�1 u
1
i

�
¹̀
j�1

p2fjquj �
¹̀
j�1

mj � n�a�p
°`

j�1 ajuj�
°k

i�1 u
1
iq

�
¹̀
j�1

p2fjquj �
¹̀
j�1

mj � nk�a

�
¹̀
j�1

p2fjquj � Er|qpIq|s (4.7)

If some uj � 0, then we can derive the same lower bound as follows: We can replace each uj

with uj�δ for any δ ¡ 0 still yielding an edge cover. Then we have
°
j ajuj�

°
i u

1
i � k�aδ,
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and hence an extra factor naδ multiplying the term n`�k�a in (4.7); however, we obtain the

same upper bound since, in the limit as δ approaches 0, this extra factor approaches 1.

Let fq �
±`

j�1p2fjquj ; the final step is to upper bound the quantity fq using the fact that°`
j�1 fjMj ¤ L. Recall that u � °j uj, then:

fq �
¹̀
j�1

p2fjquj �
¹̀
j�1

�
fjMj

uj


uj ¹̀
j�1

�
2uj
Mj


uj

¤
�°`

j�1 fjMj°
j uj

�°
j uj ¹̀

j�1

�
2uj
Mj


uj

¤
�

L°
j uj

�°
j uj ¹̀

j�1

�
2uj
Mj


uj

�
¹̀
j�1

�
2L

u �Mj


uj ¹̀
j�1

pujquj

¤
¹̀
j�1

�
2L

u �Mj


uj

Here, the first inequality comes from the weighted version of the Arithmetic Mean-Geometric

Mean inequality. The last inequality holds since uj ¤ 1 for any j.

Finally, we need a lower bound on the number of bits Mj needed to represent relation

Sj. Indeed:

Proposition 4.2.10. The number of bits Mj needed to represent Sj are:

(a) If n ¥ m2
j , then Mj ¤Mj{2

(b) If n � mj and aj ¥ 2, then Mj ¤Mj{4

Proof. For the first item, we have:

Mj ¥ aj log

�
n

mj



¥ ajmj logpn{mjq ¥ p1{2qajmj logpnq �Mj{2
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For the second item, we have:

Mj ¥ paj � 1q logpmj!q ¥ aj � 1

2
mj logpmjq ¥ paj � 1q

2aj
Mj ¥Mj{4

where the last inequality comes from the assumption that aj ¥ 2.

Applying the above bound on Mj, we complete the proof of Theorem 4.2.1. Recall that

our L denotes the load of an arbitrary server, which was denoted Li in the statement of the

theorem.

4.3 Proof of Equivalence

Let pkpqq be the extreme points of the convex polytope defined by the fractional edge packing

constraints in (2.2). Recall that the vertices of the polytope are feasible solutions u1,u2, . . .,

with the property that every other feasible solution u to the LP is a convex combination of

these vertices. Each vertex can be obtained by choosing m out of the k�` inequalities in (2.2),

transforming them into equalities, then solving for u. Thus, it holds that |pkpqq| ¤ �k�`
m

�
.

We prove here:

Theorem 4.3.1. For any vector of statistics M and number of processors p , we have:

Llower � Lupper � max
uPpkpqq

Lpu,M, pq

Proof. Recall that Lupper � pe
�
, where e� is the optimal solution to the primal LP problem

(4.2). Consider its dual LP:

maximize
¸
jPr`s

µjfj � f

subject to
¸
jPr`s

fj ¤ 1

@i P rks :
¸
j:iPSj

fj � f ¤ 0
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@j P r`s :fj ¥ 0, f ¥ 0 (4.8)

By the primal-dual theorem, its optimal solution is also e�. Writing uj � fj{f and

u � 1{f , we transform it into the following non-linear optimization problem:

maximize
1

u
�
�
�¸
jPr`s

µjuj � 1

�


subject to
¸
jPr`s

uj ¤ u

@i P rks :
¸
j:iPSj

uj ¤ 1

@j P r`s :uj ¥ 0 (4.9)

Consider optimizing the above non-linear problem. Its optimal solution must have u �°
j uj, otherwise we simply replace u with

°
j uj and obtain a feasible solution with at least

as good objective function (indeed, µj ¥ 1 for any j, and hence
°
j µjuj ¥

°
j uj ¥ 1, since

any optimal u will have sum at least 1). Therefore, the optimal is given by a fractional

edge packing u. Furthermore, for any packing u, the objective function
°
j

1
u
� pµjuj � 1q is

logp Lpu,M, pq. To prove the theorem, we show that (a) e� � u� and (b) the optimum is

obtained when u P pkpqq. This follows from:

Lemma 4.3.2. Consider the function F : Rk�1 Ñ Rk�1, where F px0, x1, . . . , xkq �
p1{x0, x1{x0, . . . , xk{x0q. Then:

• F is its own inverse, F � F�1.

• F maps any feasible solution to the system (4.8) to a feasible solution to (4.9), and

conversely.

• F maps a convex set to a convex set.

Proof. If y0 � 1{x0 and yj � xj{x0, then obviously x0 � 1{y0 and xj � yj{y. The second

item can be checked directly. For the third item, it suffices to prove that F maps a convex
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combination λx� λ1x1 where λ� λ1 � 1 into a convex combination µF pxq � µ1F px1q, where

µ � µ1 � 1. Assuming x � px0, x1, . . . , xkq and x1 � px10, x11, . . . , x1kq, this follows by setting

µ � x0{pλx0 � λx10q and µ1 � x10{pλx0 � λx10q.

This completes the proof of Theorem 4.3.1.

4.4 Discussion

We present here examples and applications of the theorems proved in this section.

4.4.1 The Speedup of the HyperCube

Denote u� the fractional edge packing that maximizes Lpu,M, pq (4.3). When the number

of servers increases, the load decreases at a rate of 1{p1{
°

j u
�
j , which we call the speedup of

the HC algorithm. We call the quantity 1{°j u
�
j the speedup exponent. Ideally, we want to

compute a query with linear speedup, which is in this case is equivalent to having
°
j u

�
j � 1,

but as we have seen this holds only for very few queries.

We have seen that, when all cardinalities are equal, then the speedup exponent is 1{τ�,

but when the cardinalities are unequal then the speedup exponent may be better.

Example 4.4.1. Consider the triangle query

C3 � S1px1, x2q, S2px2, x3q, S3px3, x1q

and assume the relation sizes are M1,M2,M3. Then, pkpC3q has five vertices, and each gives

a different value for Lpu,M, pq � pMu1
1 Mu2

2 Mu3
3 {pq1{pu1�u2�u3q:
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u Lpu,M, pq
p1{2, 1{2, 1{2q pM1M2M3q1{3{p2{3

p1, 0, 0q M1{p
p0, 1, 0q M2{p
p0, 0, 1q M3{p
p0, 0, 0q 0

(The last row is justified by the fact that Lpu,M, pq ¤ maxpM1,M2,M3q{p1{pu1�u2�u3q Ñ 0

when u1 � u2 � u3 Ñ 0.) The load of the HC algorithm is given by the largest of these

quantities, in other words, the optimal solution to the LP (4.2) that gives the load of the

HC algorithm can be given in closed form, as the maximum over these five expressions. To

compute the speedup, suppose M1   M2 � M3 � M . Then there are two cases. When

p ¤ M{M1, the optimal packing is p0, 1, 0q (or p0, 0, 1q) and the load is M{p. HyperCube

achieves linear speedup by computing a standard join of S2 ' S3 and broadcasting the smaller

relation S1; it does this by allocating shares p1 � p2 � 1, p3 � p. When p ¡M{M1 then the

optimal packing is p1{2, 1{2, 1{2q the load is pM1M2M3q1{3{p2{3, and the speedup decreases to

1{p2{3.

The following lemma sheds some light into how the HyperCube algorithm exploits unequal

cardinalities.

Lemma 4.4.2. Let q be a query, over a database with statistics M, u� � argmaxuLpu,M, pq,
and L � Lpu�,M, pq. Then:

1. If for some j, Mj   L, then u�j � 0.

2. Let M � maxkMk. If for some j, Mj  M{p, then u�j � 0.

3. When p increases, the speedup exponent remains constant or decreases, eventually

reaching 1{τ�.
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Proof. We prove the three items of the lemma.

(1) If we modify a fractional edge packing u by setting uj � 0, we still obtain a fractional

edge packing. We claim that the function fpujq � Lpu,M, pq is strictly decreasing in uj on

p0,8q: the claim implies the lemma because fp0q ¡ fpujq for any uj ¡ 0. The claim follows

by noticing that fpujq � ppuj logpMj�bq{puj�cq where a, b, c are positive constants, hence f is

monotone on uj P p0,8q, and fpujq � L ¡ Mj � fp8q, implying that it is monotonically

decreasing.

(2) This follows immediately from the previous item by noticing that M{p ¤ L; to see the

latter, let k be such that Mk �M , and let u be the packing uk � 1, uj � 0 for j � k. Then

M{p � Lpu,M, pq ¤ Lpu�,M, pq � L.

(3) Consider two edge packings u,u1, denote u � °j uj, u
1 � °j u

1
j, and assume u   u1. Let

fppq � Lpu,M, pq and gppq � Lpu1,M, pq. We have fppq � c{p1{u and gppq � c1{p1{u1 , where

c, c1 are constants independent of p. Then fppq   gppq if and only if p ¡ pc{c1q1{p1{u�1{u1q,

since 1{u � 1{u1 ¡ 0. Thus, as p increases from 1 to 8, initially we have fppq   gppq,
then fppq ¡ gppq, and the crossover point is pc{c1q1{p1{u�1{u1q. Therefore, the value

°
j u

�
j

can never decrease, proving the claim. To see that the speedup exponent reaches 1{τ�,

denote u� the optimal vertex packing (maximizing
°
j uj) and let u be any edge packing s.t.

u � °j uj   τ�. Then, when p1{u�1{τ� ¡ p±jM
u�j
j q1{τ�{p

±
jM

uj
j q1{u, we have Lpu�,M, pq ¡

Lpu,M, pq.

The first two items in the lemma say that, if M is the size of the largest relation, then the

only relations Sj that matter to the HC algorithm are those for which Mj ¥M{p; any smaller

relation will be broadcast by the HC algorithm. The last item says that the HC algorithm

can take advantage of unequal cardinalities and achieve speedup better than 1{p1{τ� , e.g. by

allocating fewer shares to the smaller relations, or even broadcasting them. As p increases,

the speedup decreases until it reaches 1{p1{τ� .
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4.4.2 Space Exponent

Let |I| � °jMj denote the size of the input database. Sometimes it is convenient to study

algorithms whose maximum load per server is given as L � Op|I|{p1�εq, where 0 ¤ ε   1 is

a constant parameter ε called the space exponent of the algorithm. The lower bound given

by Theorem 4.2.1 can be interpreted as a lower bound on the space exponent. To see this,

consider the special case, when all relations have equal size M1 � . . . � M` � M ; then the

load can also be written as L � OpM{p1�εq, and, denoting u� the optimal fractional edge

packing, we have
°
j u

�
j � τ� and Lpu�,M, pq � M{p1{τ� . Theorem 4.2.1 implies that any

algorithm with a fixed space exponent ε will report at most as many answers:

O

��
L

Lpu�,M, pq

τ��

� Er|qpIq|s � Oppτ�rε�p1�1{τ�qsq � Er|qpIq|s

Therefore, if the algorithm has a space exponent ε   1 � 1{τ�, then, as p increases, it will

return a smaller fraction of the expected number of answers. This supports the intuition

that achieving parallelism becomes harder when p increases: an algorithm with a small space

exponent may be able to compute the query correctly when p is small, but will eventually

fail, when p becomes large enough.

4.4.3 Replication Rate

Given an algorithm that computes a conjunctive query q, let Ls be the load of server s, where

s � 1, . . . , p. The replication rate r of the algorithm, defined in [14], is r � °p
s�1 Li{|I|. In

other words, the replication rate computes how many times on average each input bit is

communicated. The authors in [14] discuss the tradeoff between r and the maximum load

in the case where the number of servers is not given, but can be chosen optimally. We show

next how we can apply our lower bounds to obtain a lower bound for the tradeoff between

the replication rate and the maximum load.

Corollary 4.4.3. Let q be a conjunctive query with statistics M. Any algorithm that com-
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Conjunctive Query Share Value Lower Bound for

Exponents τ�pqq Space Exponent

Ckpx1, . . . , xkq �
�k

j�1 Sjpxj, xpj mod kq�1q 1
k
, . . . , 1

k
k{2 1� 2{k

Tkpz, x1, . . . , xkq �
�k

j�1 Sjpz, xjq 1, 0, . . . , 0 1 0

Lkpx0, x1, . . . , xkq �
�k

j�1 Sjpxj�1, xjq 0, 1
rk{2s

, 0, 1
rk{2s

, . . . rk{2s 1� 1{rk{2s

Bk,mpx1, . . . , xkq �
�

I�rks,|I|�m SIpx̄Iq 1
k
, . . . , 1

k
k{m 1�m{k

Table 4.1: Query examples: Ck � cycle query, Lk � linear query, Tk � star query, and
Bk,m � query with

�
k
m

�
relations, where each relation contains a distinct set of m out of the

k head variables. The share exponents presented are for the case where the relation sizes are
equal.

putes q with maximum load L, where L ¤Mj for every Sj
3 must have replication rate

r ¥ cL°
jMj

max
u

¹̀
j�1

�
Mj

L


uj

where u ranges over all fractional edge packings of q and c � maxup
°
j uj{4q

°
j uj .

Proof. Let fs be the fraction of answers returned by server s, in expectation, where I is a

randomly chosen matching database with statistics M. Let u be an edge packing for q and

cpuq � p°j uj{4q
°

j uj ; by Theorem 4.2.1, fs ¤ L

°
j uj

s

cpuq
±

j M
uj
j

. Since we assume all answers are

returned,

1 ¤
p̧

s�1

fs �
p̧

s�1

L
°

j uj
s

cpuq±jM
uj
j

¤ L
°

j uj�1
°p
s�1 Ls

cpuq±jM
uj
j

� L
°

j uj�1r|I|
cpuq±jM

uj
j

where we used the fact that
°
j uj ¥ 1 for the optimal u. The claim follows by noting that

|I| � °jMj.

3if L ¡ Mj , we can send the whole relation to any processor without cost
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Our lower bounds match the tradeoff for the queries that are discussed in [14], and

generalize the tradeoff analysis for all conjunctive queries.

In the specific case where the relation sizes are all equal to M , the above corollary tells

us that the replication rate must be r � ΩppM{Lqτ��1q. Hence, the ideal case of r � op1q
is achieved only when the maximum vertex cover number τ� is equal to 1 (which happens if

and only if a variable occurs in every atom of the query). Another example of the replication

rate analysis is presented below:

Example 4.4.4. Consider again the triangle query C3 and assume that all sizes are equal

to M . In this case, the edge packing that maximizes the lower bound is p1{2, 1{2, 1{2q, and

τ� � 3{2. Thus, we obtain an ΩpaM{Lq bound for the replication rate for the triangle

query.
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Chapter 5

COMPUTING JOIN QUERIES IN ONE STEP WITH SKEW

In this chapter, we focus on the effect of data skew in parallel computation. A value

in the database is skewed, and is called a heavy hitter, when its frequency exceeds some

predefined threshold. Skew for parallel joins has been studied intensively since the early

days of parallel databases, see [79]. The standard parallel join algorithm that handles skew

is the skew join [66], which consists of first detecting the heavy hitters, then treating them

differently from the others values, e.g. by partitioning tuples with heavy hitters on the other

attributes; a detailed description is in [82]. However, none of these algorithms has been

proven to be optimal in any formal sense, and to the best of our knowledge there are no

lower bounds for the communication required to compute a join in the presence of skew.

In the previous chapter, we showed tight upper and lower bounds for the load restricted

to the case where each value in the input database appears relatively few times. Here we

answer the following question: how can we compute conjunctive queries in one round under

the presence of skew? We give different answers to this question, depending on what kind of

information is available to the algorithm that computes the queries. Most of the results in

this chapter originally appear in [24, 25].

To go into more detail, let us start by presenting an example where the HC algorithm

that uses the optimal shares from (4.2) fails to work when the data has skew.

Example 5.0.5. Let qpx, y, zq � S1px, zq, S2py, zq be a simple join query, where both relations

have cardinality m (and size in bits M). The optimal shares are p1 � p2 � 1, and p3 � p.

This allocation of shares corresponds to a standard parallel hash-join algorithm, where both

relations are hashed on the join variable z. When the data has no skew (in particular, when

the frequency of each value of variable z in both S1 and S2 is at most m{p), the maximum
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load is OpM{pq with high probability.

However, under the presence of skew the maximum load can be as large as OpMq. Indeed,

consider the case where relation S1 is of the form tp1, 1q, p2, 1q, . . . , pm, 1qu and so is S2. In

other words, the frequency of value 1 is m in both S1 and S2. In this case, the HC algorithm

would give a maximum load of OpMq.

As we can see from the above example, the problem occurs when the input data contains

values with high frequency of occurrence, which we call outliers, or heavy hitters. In the rest

of this chapter, we will consider two different scenarios when handling data skew:

1. In the first scenario, in Section 5.1, we assume that the servers have no information on

the input data apart from the size of the relations. We study what parametrization of

the HC algorithm gives the best maximum load over all possible distributions of data.

2. In the second scenario, presented in Section 5.2, we assume that the algorithm knows

about the outliers in our data. In this case, we can do significantly better than the

no information case. We present tight algorithms for the class of star queries and the

triangle query, and a general algorithm for all conjunctive queries, which is not optimal.

5.1 The HyperCube Algorithm with Skew

We answer the following question: what are the optimal shares for the HC algorithm such that

the maximum load is minimized over all possible distributions of input data? In other words,

we limit our treatment to the HyperCube algorithm, but we consider data that can heavily

skewed, as in Example 5.0.5. Notice that the HC algorithm is oblivious to the values that

are skewed, so it cannot be modified in order to handle these cases separately. Our analysis

is based on the following lemma about hashing, which we prove in detail in Section A.2.

Lemma 5.1.1. Let RpA1, . . . , Arq be a relation of arity r with m tuples. Let p1, . . . , pr

be integers and p � ±
i pi. Suppose that we hash each tuple pa1, . . . , arq to the bin

ph1pa1q, . . . , hrparqq, where h1, . . . , hr are independent and perfectly random hash functions.
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Then, the probability that the maximum load exceeds Opm{pmini piqq is exponentially small

in m.

Corollary 5.1.2. Let p � pp1, . . . , pkq be the shares of the HC algorithm. For any relations,

with high probability the maximum load per server is

O

�
max
j

Mj

mini:iPSj
pi




The above bound is tight: we can always construct an instance for given shares such that

the maximum load is at least as above. Indeed, for a relation Sj with i � arg miniPSj
pi, we

can construct an instance with a single value for any attribute other than xi, and Mj values

for xi. In this case, the hashing will be across only one dimension with pi servers, and so the

maximum load has to be at least Mj{pi for the relation Sj.

As in the previous section, if L denotes the maximum load per server, we must have that

Mj{miniPSj
pi ¤ L. Denoting λ � logp L and µj � logpMj, the load is optimized by the

following LP:

minimize λ

subject to
¸
iPrks

�ei ¥ �1

@j P r`s :hj � λ ¥ µj

@j P r`s, i P Sj :ei � hj ¥ 0

@i P rks :ei ¥ 0, @j P r`s : hj ¥ 0 λ ¥ 0 (5.1)

Following the same process as in the previous section, we can obtain the dual of the

above LP, and after transformations obtain the following non-linear program with the same

optimal objective function:

maximize

°
jPr`s µjuj � 1°

jPr`s uj
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subject to @i P rks :
¸
j:iPSj

wij ¤ 1

@j P r`s :uj ¤
¸
iPSj

wij

@j P r`s :uj ¥ 0

@i P rks, j P r`s :wij ¥ 0 (5.2)

Example 5.1.3. We continue the example of the join query qpx, y, zq � S1px, zq, S2py, zq,
where both relations have m tuples. The optimal solution of (5.1) will give us shares px �
py � pz � 1{3, and maximum load of OpM{p1{3q. Observe that this load guarantee is for

any possible data distribution, so even with a highly skewed input distribution, like the one

in Example 5.0.5, the HC algorithm will still achieve a load of OpM{p1{3q instead of OpMq.

It is possible that some other algorithm than the HC algorithm can do better without

any skew information, but we leave this as an open question. Instead, we will next look at

how we can do much better when we are provided with information about the highly skewed

values in our data.

5.2 Skew with Information

We discuss here the case where there is additional information known about skew in the

input database. We will present a general lower bound for arbitrary conjunctive queries, and

show an algorithm that matches the bound for star queries

q � S1pz, x1q, S2pz, x2q, . . . , S`pz, x`q

which are a generalization of the join query. We will also present a 1-round optimal algorithm

for the triangle query. Finally, we will describe a general algorithmic technique, which we

call the BinHC algorithm, presented first in [24], which can be used to compute arbitrary

conjunctive queries. However, there is a remaining gap between the upper and lower bounds
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in the general case.

We first introduce some necessary notation. For each relation Sj with |Sj| � mj, and

each assignment h P rns for variable z, we define its frequency as mjphq � |σz�hpSjq|. We

will be interested in assignments that have high frequency, which we call heavy hitters. In

order to design algorithms that take skew into account, we will assume that every input

server knows the assignments with frequency ¥ mj{p for every relation Sj, along with their

frequency. Because each relation can contain at most p heavy hitters, the total number over

all relations will be Oppq. Since we are considering cases where the number of servers is

much smaller than the data, an Oppq amount of information can be easily stored in the input

server with a minimal increase of the load.

To prove the lower bound, we will make a stronger assumption about the information

available to the input servers. Given a conjunctive query q, fix a set of variables x and let

d � |x| Also, let xj � x X varspSjq for every relation Sj, and dj � |xj|. A statistics of type

x, or x-statistics is a vector m � pm1, . . . ,m`q, where mj is a function mj : rnsxj Ñ N. We

associate with m the function m : rnsx Ñ pNq`, where mphq � pm1ph1q, . . . ,m`ph`qq, and hj

denotes the restriction of the tuple h to the variables in xj. We say that an instance of Sj

satisfies the statistics if for any tuple hj P rnsxj , its frequency is precisely mjphjq. When

x � H, then m simply consists of ` numbers, each representing the cardinality of a relation;

thus, a x-statistics generalizes the cardinality statistics. Recall that we use upper case M �
pM1, . . . ,M`q to denote the same statistics expressed in bits, i.e. Mjphq � ajmjphq logpnq.

5.2.1 Warmup: an Optimal Algorithm for Star Queries

For the case of the star query, we will assume that the input servers know the z-statistics;

in other words, for every assignment h P rns of variable z, we know that its frequency

in relation Sjpz, xjq is precisely mjphq. Observe that in this case the cardinality of Sj is

|Sj| �
°
hPrnsmjphq.

The algorithm uses the same principle popular in virtually all parallel join implementa-

tions to date: identify the heavy hitters and treat them differently when distributing the
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data. However, the analysis and optimality proof is new, to the best of our knowledge.

Let H denote the set of heavy hitters in all relations. Note that |H| ¤ `p. The algorithm

will deal with the tuples that have no heavy hitter values (light tuples) by running the vanilla

HC algorithm, which runs with shares pz � p and pxj � 1 for every j � 1, . . . , `. For this

case, the load analysis of Section A.2 will give us a maximum load of ÕpmaxjMj{pq with high

probability, where Õ hides a polylogarithmic factor that depends on p. For heavy hitters,

we will have to adapt its function as follows.

To compute q, the algorithm must compute for each h P H the subquery

qrh{zs � S1ph, x1q, . . . Skph, xkq

which is equivalent to computing the cartesian product qz � S 11px1q, . . . , S 1kpxkq, where

S 11px1q � S1ph, x1q and S 12px2q � S2ph, x2q, and each relation S 1j has cardinality mjphq (and

size in bits Mjphq). We call qz the residual query. The algorithm will allocate ph servers to

compute qrh{zs for each h P H, such that
°
hPH ph � Θppq. Since the unary relations have

no skew, they will be of low degree and thus the maximum load Lh for each h is given by

Lh � O

�
max

uPpkpqzq
Lpu,Mphq, phq




For the star query, we have pkpqzq � t0, 1u`zp0, 0, . . . , 0q. At this point, since ph is not

specified, it is not clear which edge packing in pkpqzq maximizes the above quantity for each

h. To overcome this problem, we further refine the assignment of servers to heavy hitters:

we allocate ph,u servers to each h and each u P pkpqzq, such that ph �
°

u ph,u. Now, for a

given u P pkpqzq, we can evenly distribute the load among the heavy hitters by allocating

servers proportionally to the ”heaviness” of executing the residual query. In other words we

want ph,u �
±

jMjphquj for every h P H. Hence, we will choose:

ph,u �
S
p �

±
jMjphquj°

h1PH

±
jMjph1quj

W
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Since rxs ¤ x � 1, and |H| ¤ `p, we can compute that the total number of servers we need

is at most p`� 1q � |pkpqzq| � p, which is Θppq. Additionally, the maximum load Lh for every

h P H will be

Lh � O

�
max

uPpkpqzq

�°
hPH

±
jMjphquj
p


1{p
°

j ujq
�

Plugging in the values of pkpqzq, we obtain the following upper bound on the algorithm for

the heavy hitter case:

O

�
max
I�r`s

�°
hPH

±
jPIMjphq
p


1{|I|
�

(5.3)

Observe that the terms depend on the frequencies of the heavy hitters, and can be much

larger than the bound ÕpmaxjMj{pq we obtain from the light hitter case. In the extreme, a

single heavy hitter h with mjphq � mj for j � 1, . . . , ` will demand maximum load equal to

Opp±jMj{pq1{`q.

5.2.2 An Optimal Algorithm for Triangle Queries

We show here how to compute the triangle query,

q � Rpx, yq, Spy, zq, T pz, xq

when all relation sizes are equal to m (and have size in bits M). As with the star query, the

algorithm will deal with the tuples that have no heavy hitter values, i.e. the frequency is

less than m{p1{3, by running the vanilla HC algorithm. For this case, we apply the standard

analysis to obtain a maximum load of ÕpM{p2{3q.

Next, we show how to handle the heavy hitters. We distinguish two different cases.
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Case 1. In this case, we handle the tuples that have values with frequency ¥ m{p in at

least two variables. Observe that we did not set the heaviness threshold to m{p1{3, for reasons

that we will explain in the next case.

Without loss of generality, suppose that both x, y are heavy in at least one of the two

relations they belong to. The observation is that there at most p such heavy values for each

variable, and hence we can send all tuples of Rpx, yq with both x, y heavy (at most p2) to

all servers. Then, we essentially have to compute the query S 1py, zq, T 1pz, xq, where x and y

can take only p values. We can do this by computing the join on z; since the frequency of

z will be at most p each relation, the maximum load from the join computation will be at

most OpM{pq.

Case 2. In this case, we handle the remaining output: this includes the tuples where one

variable has frequency ¥ m{p1{3, and the other variables are light, i.e. have frequency ¤ m{p.
Without loss of generality, assume that we want to compute the query q for the values of x

that are heavy in either R or T . Observe that there are at most 2p1{3 of such heavy hitters.

If Hx denotes the set of heavy hitter values for variable x, the residual query qrh{xs for each

h P H is:

qrh{xs � Rph, yq, Spy, zq, T pz, hq

which is equivalent to computing the query qx � R1pyq, Spy, zq, T 1pzq with cardinalities

mRphq,m,mT phq respectively. As before, we allocate ph servers to compute qrh{xs for each

h P H. If there is no skew, the maximum load Lh is given by the following formula:

Lh � O

�
max

�
M

ph
,

d
MRphqMT phq

ph

��

Notice now that the only cause of skew for qx may be that y or z are heavy in Spy, zq.
However, we assumed that the frequencies for both y, z are ¤ m{p, so there will be no skew

(this is why we set the heaviness threshold for Case 1 to m{p instead of m{p1{3).
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We can now set ph � ph,1 � ph,2 (for each of the quantities in the max expression), and

choose the allocated servers similarly to how we chose for the star queries:

ph,1 �
R
p � MSphq

M

V
ph,2 �

R
p � MRphqMT phq°

hPHx
MRphqMT phq

V

We now get a load of:

L � O

�
max

�
M

p
,

d°
hMRphqMT phq

p

��

Summing up all the cases, we obtain that the load of the 1-round algorithm for computing

triangles is:

L � Õ

�
max

�
M

p2{3
,

d°
hMRphqMT phq

p
,

d°
hMRphqMSphq

p
,

d°
hMSphqMT phq

p

��

5.2.3 The binning algorithm

We now generalize some of the ideas for the simple join to an arbitrary conjunctive query

q. Extending the notion for simple joins, for each relation Sj with |Sj| � mj we say that a

partial assignment hj to a subset xj � varspSjq is a heavy hitter if and only if the number of

tuples, mjphjq, from Sj that contain hj satisfies mjphjq ¡ mj{p. As before, there are Oppq
such heavy hitters. We will assume that each input server knows the entire set of heavy

hitters for all relations.

For simplicity we assume that p is a power of 2. We will not produce quite as smooth a

bound as we did for the simple join, but we will show that the bound we produce is within

a logOp1q p factor of the optimal. To do this, for each relation Sj and subset of variables xj,

we define log2 p bins for the frequencies, or degrees of each of the heavy hitters. The b-th

bin, for b � 1, . . . , log2 p will contain all heavy hitters hj with mj{2b�1 ¥ mjphjq ¡ mj{2b.
The last bin, a bin of light hitters with b � log2 p � 1, will contain all assignments hj to xj

that are not heavy hitters. Notice that, when xj � H, then the only non-empty bin is the



64

first bin, the only heavy hitter is the empty tuple hj � pq, and mjphjq � mj.

For a bin b on xj define βb � logpp2b�1q; observe that for each heavy hitter bin, there

are at most 2pβb heavy hitters in this bin, and for the last bin we have βb � 1. Instead of

identifying each bin using its index b, we identify each bin by βb, called its bin exponent,

along with the index of the relation Sj for which it is defined, and the set xj � varspSjq.
Note that 0 � β1   β2   � � �   βlog2 p�1 � 1.

Definition 5.2.1 (Bin Combination). Let x � V � varspqq, and define xj � xX varspSjq.
A pair B � pH, pβjqjq is called a bin combination if (1) βj � 0 for every j where xj � H,

and (2) there is some consistent assignment h to x such that for each j with xj � H the

induced assignment hj to xj has bin exponent βj in relation Sj. We write CpBq for the set

of all such assignments h.

Our algorithm allocates p virtual processors to each bin combination and handles asso-

ciated inputs separately. There are Oplog pq bin choices for each relation and therefore at

most logOp1q p bin combinations in total, so at most p logOp1q p virtual processors in total.

Let Nbc be the number of possible bin combinations. As in the star join algorithm (Subsec-

tion 5.2.1), within each bin combination we partition the p servers among the heavy hitters,

using ph � p1�α servers for heavy hitter h (independent of h, since we have ensured complete

uniformity within a bin combination). However, we can only process pα ¤ p heavy hitters in

every bin combination: in general, we may have CpBq ¡ p, e.g. when x contains a variable

x1 in S1 and a variable x2 in S2, then there may be up to p � p heavy hitters in this bin

combination.

For a bin combination B and assignment h P CpBq, write mjphq for mjphjq. For each B

we will define below a set C 1pBq � CpBq with |C 1pBq| ¤ p and sets S
pBq
j � Sj of tuples for

j P r`s that extend hj for some h P C 1pBq.
The algorithm for B will compute all query answers that are joins of pSpBqj qj, by executing

the HC algorithm for a particular choice of exponents given. The share exponents for the HC

algorithm will be provided by a modification of the vertex covering primal LP (4.2), which
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describes an algorithm that suffices for all light hitters. Recall that in this LP, µj � logpMj

and λ is logp L for the load L. That LP corresponds to the bin combination BH which has

x � H and all βj � 0. In this case C 1pBHq � CpBHq has 1 element, the empty partial

assignment. More generally, write α � logp |C 1pBq|, the LP associated with our algorithm

for bin combination B is:

mininimize λ (5.4)

subject to

@j P r`s : λ�
¸

xiPvarspSjq�xj

ei ¥ µj � βj
¸

iPV�x

ei ¤ 1� α

@i P V � x : ei ¥ 0, λ ¥ 0

Thus far, this is only fully specified for B � BH since we have not defined C 1pBq for other

choices of B. We define C 1pBq inductively based on optimal solutions pλpB1q, pepB1qi qiPV�x1q to

the above LP applied to bin combinations B1 with x1 � x as follows. (Such solutions may

not be unique but we fix one arbitrarily for each bin combination.)

For h1 P C 1pB1q, we say that a heavy hitter hj of Sj that is an extension of h1
j to xj is

overweight for B1 if there are more than Nbc �mj{pβj�
°

iPxj�x1
j
e
pB1q
i elements of Sj consistent

with hj. C
1pBq consists of all assignments h P CpBq such that there is some j P r`s, some bin

combination B1 on set x1 � x such that x�x1 � varspSjq, and some h1 P C 1pB1q such that h

is an extension of h1 and hj is an overweight heavy hitter of Sj for B1. The following lemma,

which is proved in the appendix, shows that α ¤ 1 and thus that the LP for B is feasible.

Lemma 5.2.2. For all bin combinations B, |C 1pBq| ¤ p.

Let AB � r`s be the set of all j such that xj � H. For each j P r`s �AB, let S
pBq
j consist

of all tuples in Sj that do not contain any heavy hitter h2
j of Sj that is overweight for B.

For each j P AB, and h P C 1pBq let S
pBq
j phq consist of all tuples in Sj that contain hj on xj
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(with bin exponent βj) but do not contain any heavy hitter h2
j of Sj that is overweight for

B and a proper extension of hj. S
pBq
j will be the union of all S

pBq
j phq for all h P C 1pBq.

For each of the pα heavy hitter assignments h P C 1pBq the algorithm uses p1�α virtual

processors to compute the join of the subinstances S
pBq
j phq for j P r`s. Those processors will

be allocated using the HC algorithm that assigns pe
pBq
i shares to each variable xi P V � x.

It remains to show that the load of the algorithm for B is within a logOp1q p factor of pλ
pBq

,

where λpBq is given by the LP for B.

Lemma 5.2.3. Let h be an assignment to x that is consistent with bin combination B. If

we hash each residual relation S
pBq
j phq on varspSjq � xj using pe

pBq
i values for each xi P

varspSjq � xj, each processor receives

O

�
pNbc � ln pqr1 �mj{pminpβj�

°
iPvarspSjq�xj

e
pBq
i ,1q




values with high probability, where r1 � maxjprj � |xj|q.

Proof. For j P r`s �AB, S
pBq
j only contains tuples of Sj that are not overweight for B, which

means that for every x2
j � varspSjq and every heavy hitter assignment h2 to the variables

of x2
j , there are at most

Nbc �mj{pβj�
°

iPx2
j
e
pBq
i � Nbc �mj{pβj�

°
iPx2

j
�xj

e
pBq
i

elements of Sj consistent with h2. Every other assignment h2 to the variables of x2
j is a

light hitter and therefore is contained in at most mj{p consistent tuples of Sj. For j P AB,

we obtain the same bound, where the only difference is that we need to restrict things to

extensions of hj. This bound gives the smoothness condition on S
pBq
j phq necessary to apply

Lemma 4.1.2 to each relation S
pBq
j phq and yields the claimed result.

As a corollary, we obtain:
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Corollary 5.2.4. Let Lmin � maxjpmj{pq. The maximum load of our algorithm using p

(virtual) processors for B is OppNbc � ln pqrmax � maxpLmin, pλqq with high probability, where

λ � λpBq is the optimum of the LP for B and rmax is the maximum arity of any Sj.

Proof. There are p1�α processors allocated to each h and pα such assignments h so that the

maximum load per h is also the maximum overall load. Given the presence of the Lmin

term, it suffices to show that the maximum load per h due to relation S
pBq
j phq is at most

pln pqk�|x| �maxpmj{p, pλq for each j P r`s. Observe that by construction, pλ is the smallest

value such that pλ � pβj�
°

xiPvarspSjq�xj
e
pBq
i ¥ mj for all j and

°
iPx e

pBq
i ¤ 1 � α. Lemma 5.2.3

then implies that the load due to relation S
pBq
j phq is at most a polylogarithmic factor times

maxpmj{p,mj{pβj�
°

xiPvarspSjq�Hj
e
pBq
i q

which is at most maxpmj{p, pλq.

Lemma 5.2.5. Every tuple in the join of pSjqjPr`s is contained in a join of subrelations

pSpBqj qjPr`s for some bin combination B.

Proof. Observe first that every join tuple is consistent with the empty bin combination BH.

Therefore the join of pSpBHqj qjPr`s contains all join tuples that do not contain an overweight

heavy hitter hj for any relation Sj with respect to BH (and therefore contains all join tuples

that are not consistent with any heavy hitter). Now fix a join tuple t that is overweight for

BH. By definition, there is an associated relation Sj1 and x1 � varspSj1q such that h1 � ptx1q
is an overweight heavy hitter of Sj1 for BH. Let B1 be the bin combination associated with

h1. By definition h1 P C 1pB1q. Now either t is contained in the join of pSpB1q
j qjPr`s and we are

done or there is some relation Sj2 and x2 such that x2�x1 � varspSj2q such that h2 � ptx2q
has the property that h2

j2
is an overweight heavy hitter of Sj2 for B1. Again, in the latter

case, if B2 is the bin combination associated with h2 then h2 P C 1pB2q by definition and we

can repeat the previous argument for B2 instead of B1. Since the number of variables grows

at each iteration, we can repeat this at most k times before finding a first Br such that t is
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not associated with any overweight heavy hitter for Br. In this case t will be computed in

the join of pSpBrq
j qjPr`s.

We can now prove the main theorem.

Theorem 5.2.6. The algorithm that computes the joins of pSpBqj qjPr`s for every bin combina-

tion B using the HC algorithm as described above has maximum load L ¤ logOp1q p�maxB p
λpBq.

Proof. There are only logOp1q p choices of B and for each choice of B, by Corollary 5.2.4, the

load with p virtual processors is logOp1q p �maxpLmin, pλpBqq. To derive our claim it suffices to

show that we can remove the Lmin term. Observe that in the original LP which corresponds

to an empty bin combination B, we have λ �°iPSj
ei ¥ µj for each j P r`s and

°
i ei ¤ 1.

This implies that λ ¥ µj � 1 and hence pλ ¥ mj{p for each j, so pλ ¥ Lmin.

5.2.4 Lower Bound

The lower bound we present here holds for any conjunctive query, and generalizes the

lower bound in Theorem 4.2.1, which was over databases with cardinality statistics M �
pM1, . . . ,M`q, to databases with a fixed degree sequence. If the degree sequence is skewed,

then the new bounds can be stronger, proving that skew in the input data makes query

evaluation harder.

Let us fix statistics M of type x. We define qx as the residual query, obtained by removing

all variables x, and decreasing the arities of Sj as necessary (the new arity of relation Sj is

aj � dj). Clearly, every fractional edge packing of q is also a fractional edge packing of qx,

but the converse does not hold in general. If u is a fractional edge packing of qx, we say that

u saturates a variable xi P x, if
°
j:xiPvarspSjq

uj ¥ 1; we say that u saturates x if it saturates

all variables in x. For a given x and u that saturates x, define

Lxpu,M, pq �
�°

hPrnsx

±
jMjphjqujq
p

�1{
°

j uj

(5.5)
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Theorem 5.2.7. Fix statistics M of type x such that aj ¡ dj for every relation Sj. Consider

any deterministic MPC algorithm that runs in one communication round on p servers and

has maximum load L in bits. Then, for any fractional edge packing u of q that saturates x,

we must have

L ¥ min
j

paj � djq
4aj

� Lxpu,M, pq.

Note that, when x � H then Lxpu,M, pq � Lpu,M, pq, as defined in (4.3). However, our

theorem does not imply Theorem 4.2.1, since it does not give a lower bound on the expected

size of the algorithm output as a fraction of the expected output size.

Proof. For h P rnsx and aj P Sj, we write aj ‖ h to denote that the tuple aj from Sj matches

with h at their common variables xj, and denote pSjqh the subset of tuples aj that match

h: pSjqh � taj | aj P Sj, aj ‖ hu. Let Ih denote the restriction of I to h, in other words

Ih � ppS1qh, . . . , pS`qhq.
We pick the domain n such that n � pmaxjtmjuq2 and construct a probability space for

instances I defined by the x-statistics M as follows. For a fixed tuple h P rnsx, the restriction

Ih is a uniformly chosen instance over all matching databases with cardinality vector Mphq,
which is precisely the probability space that we used in the proof of Theorem 4.3.1. In partic-

ular, for every aj P rnsxj , the probability that Sj contains aj is P paj P Sjq � mjphjq{naj�dj .
Lemma 4.2.2 immediately gives:

Er|qpIhq|s � nk�d
¹̀
j�1

mjphjq
naj�dj

Let us fix some server and let msgpIq be the message the server receives on input I. As

in the previous section, let Kmsgj
pSjq denote the set of tuples from relation Sj known by

the server. Let wjpajq � P paj P KmsgjpSjqpSjqq, where the probability is over the random

choices of Sj. This is upper bounded by P paj P Sjq:

wjpajq ¤ mjphjq{naj�dj , if aj ‖ h (5.6)
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We derive a second upper bound by exploiting the fact that the server receives a limited

number of bits, in analogy with Lemma 4.2.5:

Lemma 5.2.8. Let Sj a relation with aj ¡ dj. Suppose that the size of Sj is mj ¤ n{2 (or

mj � n), and that the message msgjpSjq has at most L bits. Then, we have Er|Kmsgj
pSjq|s ¤

4L
paj�djq logpnq

.

Observe that in the case where aj � dj for some relation Sj, the x-statistics fix all the

tuples of the instance for this particular relation, and hence Er|Kmsgj
pSjq|s � mj.

Proof. We can express the entropy HpSjq as follows:

HpSjq � HpmsgjpSjqq �
¸

msgj

P pmsgjpSjq � msgjq �HpSj | msgjpSjq � msgjq

¤ L�
¸

msgj

P pmsgjpSjq � msgjq �HpSj | msgjpSjq � msgjq (5.7)

For every h P rnsx, let Kmsgj
ppSjqhq denote the known tuples that belong in the restric-

tion of Sj to h. Following the proof of Lemma 4.2.5, and denoting by Mjphjq the number

of bits necessary to represent pSjqh, we have:

HpSj | msgjpSjq � msgjq ¤
¸

hPrnsx

�
1�

|Kmsgj
ppSjqhq|

2mjphjq

�
Mjphjq

� HpSjq �
¸

hPrnsx

|Kmsgj
ppSjqhq|

2mjphjq Mjphjq

¤ HpSjq �
¸

hPrnsx

|Kmsgj
ppSjqhq|

2mjphjq mjphjqaj � dj
2

logpnq

� HpSjq � p1{4q � |Kmsgj
pSjq|paj � djq logpnq

where the last inequality comes from Proposition 4.2.10. Plugging this in (5.7), and solving
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for Er|KmpSjq|s:

Er|Kmsgj
pSjq|s ¤ 4L

paj � djq logpnq

This concludes our proof.

Let qx be the residual query, and recall that u is a fractional edge packing that saturates

x. Define the extended query qx
1 to consist of qx, where we add a new atom S 1ipxiq for every

variable xi P varspqxq. Define u1i � 1�°j:iPSj
uj. In other words, u1i is defined to be the slack

at the variable xi of the packing u. The new edge packing pu,u1q for the extended query

q1x has no more slack, hence it is both a tight fractional edge packing and a tight fractional

edge cover for qx. By adding all equalities of the tight packing we obtain:

`̧

j�1

paj � djquj �
k�ḑ

i�1

u1i � k � d

We next compute how many output tuples from qpIhq will be known in expectation by

the server. Note that qpIhq � qxpIhq, and thus:

Er|KmsgpqpIhqq|s � Er|KmsgpqxpIhqq|s

�
¸
a‖h

¹̀
j�1

wjpajq

�
¸
a‖h

¹̀
j�1

wjpajq
k�d¹
i�1

w1
ipaiq

¤
k�d¹
i�1

nu
1
i �
¹̀
j�1

�
�¸

aj‖h

wjpajq1{uj
�

uj

By writing wjpajq1{uj � wjpajq1{uj�1wjpajq for aj ‖ h, we can bound the sum in the above
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quantity as follows:

¸
aj‖h

wjpajq1{uj ¤
�
mjphjq
naj�dj


1{uj�1 ¸
aj‖h

wjpajq � pmjphjqndj�ajq1{uj�1Ljphq

where Ljphq �
°

aj‖hwjpajq. Notice that for every relation Sj, we have
°

hjPrns
xj Ljphjq �°

ajPrns
aj wjpajq. We can now write:

Er|KmsgpqpIhqq|s ¤ n
°k�d

i�1 u
1
i

¹̀
j�1

�
Ljphqmjphjq1{uj�1npdj�ajqp1{uj�1q

�uj

�
¹̀
j�1

Ljphquj �
¹̀
j�1

mjphjq�uj � Er|qpIhq|s (5.8)

Summing over all p servers, we obtain that the expected number of answers that can be

output for qpIhq is at most p �Er|KmsgpqpIhqq|s. If some h P rnsx this number is not at least

Er|qpIhq|s, the algorithm will fail to compute qpIq. Consequently, for every h we must have

that
±`

j�1 Ljphjquj ¥ p1{pq �
±`

j�1mjphjquj . Summing the inequalities for every h P rnsx:

1

p
�
¸

hPrnsx

¹̀
j�1

mjphjquj ¤
¸

hPrnsx

¹̀
j�1

Ljphjquj

¤
¹̀
j�1

�
� ¸

hjPrns
xj

Ljphjq
�

uj

by Friedgut’s inequality

¤
¹̀
j�1

�
4L

paj � djq logpnq

uj

by Lemma 5.2.8

Solving for L and using the fact that Mj � ajmj logpnq, we obtain that for any edge packing

u that saturates x,

L ¥
�

min
j

aj � dj
4aj



�
�°

hPrnsx

±
jMjphjquj
p

�1{
°

j uj
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which concludes the proof.

To see how Theorem 5.2.7 applies to the star query, we assume that the input servers

know z-statistics M; in other words, for every assignment h P rns of variable z, we know

that its frequency in relation Sj is mjphq. Then, for any edge packing u that saturates z, we

obtain a lower bound of

L ¥ p1{8q �
�°

hPrns

±
jMjphquj
p

�1{
°

j uj

Observe that the set of edge packings that saturate z and maximize the above quantity is

t0, 1u`zp0, . . . , 0q. Hence, we obtain a lower bound

L ¥ p1{8q �max
I�r`s

�°
hPrns

±
jPIMjphq
p

�1{|I|

A similar argument proves the optimality for the triangle query C3.



74

Chapter 6

COMPUTING JOIN QUERIES IN MULTIPLE ROUNDS

In this chapter, we analyze the computation of conjunctive queries in the MPC model for

algorithms with multiple rounds. We show that there exists a tradeoff between the number

of rounds and the load when computing queries, at least for the case where the input data

has no skew: using more rounds, and hence more synchronization, it is possible to achieve a

better load per round.

We mainly focus on the following question: given a query q over input data without skew,

what is the optimal load to compute q in r rounds, where r ¥ 2? In Section 6.1, we provide

both upper and lower bounds for the case of matching databases. In order to prove lower

bounds for the case of multiple rounds, we restrict to the tuple-based MPC model, where it

is easier to analyze how communication is performed. A surprising consequence of our lower

bounds is that computing connected components in a graph of size M cannot be done in a

constant number of rounds with load less than M .

In Section 6.2, we briefly explore the computation of conjunctive queries in multiple

rounds for any input data. In particular, we present an algorithm for computing the triangle

query in 2 rounds with worst-case load that is better than the load that can be achieved in

a single round.

6.1 Input Data without Skew

To present and analyze the behavior of multi-round algorithms, we restrict both the structure

of the input and the type of computation in the MPC model. In particular, our multi-round

algorithms will process only queries where the relations are of equal size and the data has no

skew. Additionally, our lower bounds are proven for a restricted version of the MPC model,
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called the the tuple-based MPC model, which limits the way communication is performed.

6.1.1 An Algorithm for Multiple Rounds

In Chapter 4, we showed that in the case where all relations have size equal to M and

are matching databases (i.e. the degree of any value is exactly one), we can compute a

conjunctive query q in one round with maximum load

L � OpM{p1{τ�pqqq

where τ�pqq denotes the fractional vertex covering number of q. Hence, for any ε ¥ 0, a

conjunctive query q with τ�pqq ¤ 1{p1�εq can be computed in one round in the MPC model

with load L � OpM{p1�εq; recall from Section 4.4 that we call the parameter ε the space

exponent.

We define now the class of queries Γrε using induction on r. For r � 1, we define

Γ1
ε � tq | τ�pqq ¤ 1{p1� εqu

For r ¡ 1, we define Γrε to be the set of all conjunctive queries q constructed as fol-

lows. Let q1, . . . , qm P Γr�1
ε be m queries, and let q0 P Γ1

ε be a query over a different

vocabulary V1, . . . , Vm, such that |varspqjq| � aritypVjq for all j P rms. Then, the query

q � q0rq1{V1, . . . , qm{Vms, obtained by substituting each view Vj in q0 with its definition qj,

is in Γrε. In other words, Γrε consists of queries that have a query plan of depth r, where each

operator is a query computable in one step with maximum load OpM{p1�εq. The following

proposition is now straightforward.

Proposition 6.1.1. Every conjunctive query q P Γrε with input a matching database where

each relation has size M can be computed by an MPC algorithm in r rounds with maximum

load L � OpM{p1�εq.

We next present two examples that provide some intuition on the structure of the queries
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in the class Γrε.

Example 6.1.2. Consider the query Lk in Table 4.1 with k � 16; we can construct a query

plan of depth r � 2 and load L � OpM{p1{2q (with space exponent ε � 1{2). The first step

computes in parallel four queries, v1 � S1, S2, S3, S4, . . . , v4 � S13, S14, S15, S16. Each query

is isomorphic to L4, therefore τ�pq1q � � � � � τ�pq4q � 2 and thus each can be computed in

one step with load L � OpM{p1{τ�pq1qq � OpM{p1{2q. The second step computes the query

q0 � V1, V2, V3, V4, which is also isomorphic to L4.

We can generalize the above approach for any query Lk. For any ε ¥ 0, let kε be the

largest integer such that Lkε P Γε1. In other words, τ�pLkεq ¤ 1{p1 � εq and so we choose

kε � 2t1{p1 � εqu. Then, for any k ¥ kε, Lk can be computed using Lkε as a building

block at each round: the plan will have a depth of rlogkεpkqs and will achieve a load of

L � OpM{p1�εq.

Example 6.1.3. Consider the query SPk �
�k

i�1Ripz, xiq, Sipxi, yiq. Since τ�pSPkq � k,

the one round algorithm can achieve a load of OpM{p1{kq.
However, we can construct a query plan of depth 2 for SPk with load OpM{pq, by com-

puting the joins qi � Ripz, xiq, Sipxi, yiq in the first round and in the second round joining

all qi on the common variable z.

We next present an upper bound on the number of rounds needed to compute any query

if we want to achieve a given load L � OpM{p1�εq; in other words, we ask what is the

minimum number of rounds for which we can achieve a space exponent ε.

Let radpqq � minu maxv dpu, vq denote the radius of a query q, where dpu, vq denotes

the distance between two nodes in the hypergraph of q. For example, radpLkq � rk{2s and

radpCkq � tk{2u.

Lemma 6.1.4. Fix ε ¥ 0, let kε � 2t1{p1� εqu, and let q be any connected query. Define

rpqq �

$'&
'%

rlogkεpradpqqqs� 1 if q is tree-like,

tlogkεpradpqqqu� 2 otherwise.
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q ε r r � fpεq
query space exponent rounds to achieve rounds/space

for 1 round load OpM{pq tradeoff

Ck 1� 2{k rlog ks � log k
logp2{p1�εqq

Lk 1� 1
rk{2s

rlog ks � log k
logp2{p1�εqq

Tk 0 1 NA
SPk 1� 1{k 2 NA

Table 6.1: The tradeoff between space and communication rounds for several queries.

Then, q can be computed in rpqq rounds on any matching database input with relations of

size M with maximum load L � OpM{p1�εq.

Proof. By definition of radpqq, there exists some node v P varspqq, such that the maximum

distance of v to any other node in the hypergraph of q is at most radpqq. If q is tree-like

then we can decompose q into a set of at most |atomspqq|radpqq (possibly overlapping) paths

P of length ¤ radpqq, each having v as one endpoint. Since it is essentially isomorphic to

L`, a path of length ` ¤ radpqq can be computed in at most rlogkεpradpqqqs rounds using the

query plan from Proposition 6.1.1 together with repeated use of the one-round HyperCube

algorithm for paths of length kε. Moreover, all the paths in P can be computed in parallel,

because |P | is a constant depending only on q. Since every path will contain variable v, we

can compute the join of all the paths in one final round with load OpM{pq.
The only difference for general connected queries is that q may also contain atoms that

join vertices at distance radpqq from v that are not on any of the paths of length radpqq from

v: these can be covered using paths of length radpqq � 1 from v. To get the final formula,

we apply the equality rlogapb� 1qs � tlogapbqu� 1, which holds for positive integers a, b.

As an application of the above lemma, Table 6.1 shows the number of rounds required

by different types of queries.
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6.1.2 Lower Bounds for Multiple Rounds

We present here a general lower bound for connected conjunctive queries in the tuple-based

MPC model.

We first introduce a combinatorial object associated with every query q, called the pε, rq-
plan, which is central to the construction of the multi-round lower bound. We next define

this notion, and also discuss how we can construct such plans for various classes of queries.

Given a query q and a set M � atomspqq, recall that q{M is the query that results from

contracting the edges M in the hypergraph of q. Also, we define M � atomspqqzM .

Definition 6.1.5. Let q be a connected conjunctive query. A set M � atomspqq is ε-good

for q if it satisfies the following two properties:

1. Every connected subquery of q that is in Γ1
ε contains at most one atom in M .

2. χpMq � 0 (and thus χpq{Mq � χpqq by Lemma 2.1.4).

For ε P r0, 1q and integer r ¥ 0, an pε, rq-plan M is a sequence M1, . . . ,Mr, with M0 �
atomspqq � M1 � � � �Mr such that (a) for j � 0, . . . , r � 1, Mj�1 is ε-good for q{M j, and

(b) q{M r R Γ1
ε.

We provide some intuition about the above definition with the next two lemmas, which

shows how we can obtain such a plan for the query Lk and Ck respectively.

Lemma 6.1.6. The query Lk admits an pε, rlogkεpkqs � 2q-plan for any integer k ¡ kε �
2t1{p1� εqu.

Proof. We will prove using induction that for every integer r ¥ 0, if k ¥ kr�1
ε � 1 then Lk

admits an pε, rq-plan. This proves the lemma, because then for a given k the smallest integer

r we can choose for the plan is r � tlogkεpk � 1qu � 1 � rlogkεpkqs � 2. For the base case

r � 0, we have that k ¥ kε � 1, and observe that Lk{M0 � Lk R Γ1
ε.

For the induction step, let k0 ¥ kr�1
ε � 1; then from the inductive hypothesis for every

k ¥ krε � 1 the query Lk has an pε, r � 1q-plan. Define M to be the set of atoms where we
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include every kε-th atom Lk0 , starting with S1; in other words, M � tS1, Skε�1, S2kε�1, . . .u.
Observe now that Lk0{M � S1px0, x1q, Skε�1px1, xkε�1q, S2kε�1pxkε�1, x2kε�1q, . . ., which is

isomorphic to Lrk0{kεs.

We will show first that M is ε-good for Lk0 . Indeed, χpLk0{Mq � χpLrk0{kεq � χpLk0q
and thus property (2) is satisfied. Additionally, recall that Γ1

ε consists of queries for which

τ�pqq ¤ 1{p1�εq; thus the connected subqueries of Lk0 that are in Γ1
ε are precisely queries of

the form Sjpxj�1, xjq, Sj�1pxj, xj�1q, . . . , Sj�k�1pxj�k�2, xj�k�1q, where k ¤ kε. By choosing

M to contain every kε-atom, no such subquery in Γ1
ε will contain more than one atom from

M and thus property (1) is satisfied as well.

Finally, we have that rk0{kεs ¥ rkrε � 1{kεs � krε � 1 and thus from the inductive hy-

pothesis the query Lk0{M admits an pε, r � 1q-plan. By definition, this implies a sequence

M1, . . . ,Mr�1; the extended sequence M,M1, . . . ,Mr�1 will now be an pε, rq-plan for Lk0 .

Lemma 6.1.7. The query Ck admits an pε, tlogkεpk{pmε � 1qquq-plan, for every integer k ¡
mε � t2{p1� εqu.

Proof. The proof is similar to the proof for the query Lk, since we can observe that any set

M of atoms that are (at least) kε apart along any cycle Ck is a ε-good set for Ck and further

Ck{M is isomorphic to Ctk{kεu. The only difference is that the base case for r � 0 is that

k ¥ mε � 1. Thus, the inductive step is that for every integer r ¥ 0, if k ¥ krεpmε � 1q then

Ck admits an pε, rq-plan.

The above examples of queries show how we can construct pε, rq-plans. We next present

the main theorem of this section, which tells us how we can use such plans to obtain lower

bounds on the number of communication rounds needed to compute a conjunctive query.

Theorem 6.1.8 (Lower Bound for Multiple Rounds). Let q be a conjunctive query that

admits an pε, rq-plan. For every randomized algorithm in the tuple-based MPC model that

computes q in r � 1 rounds and with load L ¤ cM{p1�ε for a sufficiently small constant c,

there exists a (matching) instance I with relations of size M where the algorithm fails to

compute q with probability Ωp1q.
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The constant c in the above theorem depends on the query q and the parameter ε. To

state the precise expression the constant c, we need some additional definitions.

Definition 6.1.9. Let q be a conjunctive query and M be an pε, rq-plan for q. We de-

fine τ�pMq to be the minimum of τ�pq{M rq and τ�pq1q, where q1 ranges over all connected

subqueries of q{M j�1, j P rrs, such that q1 R Γ1
ε.

Proposition 6.1.10. Let q be a conjunctive query and M be an pε, rq-plan for q. Then,

τ�pMq ¡ 1{p1� εq.

Proof. For every q1 R Γ1
ε, we have by definition that τ�pq1q ¡ 1{p1� εq. Additionally, by the

definition of an pε, rq-plan, we have that τ�pq{M rq ¡ 1{p1� εq.

Further, for a given query q let us define the following sets:

Cpqq � tq1 | q1 is a connected subquery of qu
Cεpqq � tq1 | q1 R Γ1

ε, q
1 is a connected subquery of qu

Sεpqq � tq1 | q1 R Γ1
ε, q

1 is a minimal connected subquery of qu.

and let

βpq,Mq �
�

1

τ�pq{M rq


τ�pMq

�
ŗ

k�1

¸
q1PSεpq{Mk�1q

�
1

τ�pq1q

τ�pMq

We can now present the precise statement.

Theorem 6.1.11. If q has an pε, rq-plan M then any deterministic tuple-based MPC algo-

rithm running in r � 1 rounds with maximum load L reports at most

βpq,Mq �
�pr � 1qL

M


τ�pMq

p � Er|qpIq|s

correct answers in expectation over a uniformly at random chosen matching database I where

each relation has size M .
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The above theorem implies Theorem 6.1.8 by following the same proof as in Theo-

rem 4.2.3. Indeed, for L ¤ cM{p1�ε we obtain that the output tuples will be at most

f � Er|qpIq|s, where f � βpq,Mq � ppr � 1qcqτ�pMq. If we choose the constant c such that

f   1{9, we can apply Lemma 4.2.4 to show that for any randomized algorithm we can find

an instance I where it will fail to produce the output with probability Ωp1q.
In the rest of this section, we present the proof of Theorem 6.1.11. Let A be an algorithm

that computes q in r � 1 rounds. The intuition is as follows. Consider an ε-good set M ;

then any matching database i consists of two parts, i � piM , iMq,1 where iM are the relations

for atoms in M , and iM are all the other relations. We show that, for a fixed instance iM ,

the algorithm can be used to compute q{MpiMq in r � 1 rounds; however, the first round

is almost useless, because the algorithm can discover only a tiny number of join tuples with

two or more atoms Sj P M (since every subquery q1 of q that has two atoms in M is not in

Γ1
ε). This shows that the algorithm can compute most of the answers in q{MpiMq in only r

rounds, and we repeat the argument until a one-round algorithm remains.

To formalize this intuition, we need some notation. For two relations A,B we write A
B,

called the semijoin, to denote the set of tuples in A for which there is a tuple in B that has

equal values on their common variables. We also write ABB, called the antijoin, to denote

the set of tuples in A for which no tuple in B has equal values on their common variables.

Let A be a deterministic algorithm with r � 1 rounds, k P rr � 1s a round number, s a

server, and q1 a subquery of q. We define:

KA,k,s
msgpq1q � ta1 P rnsvarspq1q | @ matching database i,msg¤ks pA, iq � msg ñ a1 P q1piqu

KA,k
msgpq1q �

p¤
s�1

KA,k,s
msgs

pq1q

Using the above notation, KA,k,s
msg¤k

s pA,iqpq1q and KA,k
msg¤kpA,iqpq1q denote the set of join tuples

from q1 known at round k by server s, and by all servers, respectively, on input i. Further,

1We will use i to denote a fixed matching instance, as opposed to I that denotes a random instance.
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Apiq � KA,r�1

msg¤r�1pA,iqpqq is w.l.o.g. the final answer of the algorithm A on input i. Finally,

let us define

JA,qpiq �
¤

q1PCpqq

KA,1
msg¤1pA,iqpq1q

JA,q
ε piq �

¤
q1PCεpqq

KA,1
msg¤1pA,iqpq1q

JA,q
ε piq is precisely the set of join tuples known after the first round, but restricted to those

that correspond to subqueries that are not computable in one round; thus, the number of

tuples in JA,q
ε piq will be small.

We can now state the two lemmas we need as building blocks to prove Theorem 6.1.11.

Lemma 6.1.12. Let q be a query, and M be any ε-good set for q. If A is an algorithm with

r � 1 rounds for q, then for any matching database iM over the atoms of M , there exists

an algorithm A1 with r rounds for q{M using the same number of processors and the same

total number of bits of communication received per processor such that, for every matching

database iM defined over the atoms of M :

|ApiM , iMq| ¤ |qpiM , iMq 
 JA,q
ε piM , iMq| � |A1piMq|.

In other words, the algorithm returns no more answers than the (very few) tuples in

JA,q
ε , plus what another algorithm A1 that we define next computes for q{M using one fewer

round.

Proof. We call q{M the contracted query. While the original query q takes as input the

complete database i � piM , iMq, the input to the contracted query is only iM . Observe also

that for different matching databases iM , the lemma produces different algorithms A1. We

fix now a matching database iM .

The construction of A1 is based on the following two constructions, which we call con-

traction and retraction.
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Contraction. We first show how to use the algorithm A to derive an algorithm Ac for q{M
that uses the same number of rounds as A.

For each connected component qc of M , we choose a representative variable zc P varspqcq.
The query answer qcpiMq is a matching instance, since qc is tree-like (because χpMq � 0).

Denote mσ � tσx | x P varspqqu, where, for every variable x P varspqq, σx : rns Ñ rns is the

following permutation. If x R varspMq, then σx is defined as the identity, i.e. σxpaq � a for

every a P rns. Otherwise, if qc is the unique connected component such that x P varspqcq
and a P qcpiMq is the unique tuple such that ax � a, we define σxpaq � azc . In other words,

we think of mσ as permuting the domain of each variable x P varspqq. Observe that mσ is

known to all servers, since iM is a fixed instance.

It holds that mσpqpiqq � qpmσpiqq, and mσpiMq � idM , where idM is the identity

matching database (where each relation in M is tp1, 1, . . .q, p2, 2, . . .q, . . .u). Therefore,2

q{MpiMq � mσ�1pΠvarspq{MqpqpmσpiMq, idMqqq

Using the above equation, we can now define the algorithm Ac that computes the query

q{MpiMq. First, each input server for Sj P M replaces Sj with mσpSjq. Second, we run A

unchanged, substituting all relations Sj P M with the identity. Finally, we apply mσ�1 to

the answers and return the output. Hence, we have:

AcpiMq � mσ�1pΠvarspq{MqpApmσpiMq, idMqqq (6.1)

Retraction. Next, we transform Ac into a new algorithm Ar, called the retraction of Ac,

that takes as input iM as follows.

• In round 1, each input server for Sj sends (in addition to the messages sent by Ac)

2We assume varspq{Mq � varspqq; for that, when we contract a set of nodes of the hypergraph, we replace
them with one of the nodes in the set.
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every tuple in aj P Sj to all servers s that eventually receive aj. In other words,

the input server sends t to every s for which there exists k P rr � 1s such that aj P
KAc,k,s

msg¤k
s pAc,iM q

pSjq. This is possible because of the restrictions in the tuple-based MPC

model: all destinations of aj depend only on Sj, and hence can be computed by the

input server. Note that this does not increase the total number of bits received by any

processor, though it does mean that more communication will be performed during the

first round.

• In round 2, Ar sends no tuples.

• In rounds k ¥ 3, Ar sends a join tuple t from server s to server s1 if server s knows t

at round k, and also algorithm Ac sends t from s to s1 at round k.

Observe first that the algorithm Ar is correct, in the sense that the output ArpiMq will

be a subset of q{MpiMq. We now need to quantify how many tuples Ar misses compared to

the contracted algorithm Ac. Let QM � tq1 | q1 subquery of q{M, |q1| ¥ 2u, and define:

JAc

� piMq �
¤

q1PQM

KAc,1

msg1pAc,iq
pq1q.

The set JAc

� piMq is exactly the set of non-atomic tuples known by Ac right after round 1:

these are also the tuples that the new algorithm Ar will choose not to send during round 2.

Lemma 6.1.13. pAcpiMqB JAc

� piMqq � ArpiMq

Proof. We will prove the statement by induction on the number of rounds: for any subquery

q1 of q{M , if server s knows t P pq1piMqB JAc

� piMqq at round k for algorithm Ac, then server

s knows t at round k for algorithm Ar as well.

For the induction base, in round 1 we have by construction that KAc,1,s

msg1
spAc,iM q

pSjq �
KAr,1,s

msg1
spAr,iM q

pSjq for every Sj P M , and thus any tuple t (join or atomic) that is known by

server s for algorithm Ac will be also known for algorithm Ar.

Consider now some round k � 1 and a tuple t P pq1piMq B JAc

� piMqq known by server s

for algorithm Ac. If q1 is a single relation, the statement is correct since by construction all
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atomic tuples are known at round 1 for algorithm Ar. Otherwise q1 P QM . Let t1, . . . , tm

be the subtuples at server s from which tuple t is constructed, where tj P qjpiMq for every

j � 1, . . . ,m. Observe that tj P pqjpiMq B JAc

� piMqq. Thus, if ti was known at round k by

some server s1 for algorithm Ac, by the induction hypothesis it would be known by server s1

for algorithm Ar as well, and thus it would have been communicated to server s at round

k � 1.

From the above lemma it follows that:

AcpiMq � ArpiMq Y pq{MpiMq 
 JAc

� piMqq (6.2)

Additionally, by the definition of ε-goodness, if a subquery q1 of q has two atoms in M , then

q1 R Γ1
ε. Hence, we also have:

JAc

� piMq � mσ�1pΠvarspq{MqpJA,q
ε pmσpiqqqq (6.3)

SinceAr send no information during the second round, we can compress it to an algorithm

A1 that uses only r rounds. Finally, since M is ε-good, we have χpq{Mq � χpqq and thus

|AcpiMq| � |ApiM , iMq|. Combining everything together:

|ApiM , iMq| � |AcpiMq|
¤ |ArpiMq| � |pq{MpiMq 
 JAc

� piMqq|
¤ |A1piMq| � |pq{MpiMq 
mσ�1pΠvarspq{MqpJA,q

ε pmσpiqqqq|
¤ |A1piMq| � |Πvarspq{Mqpqpiq 
 JA,q

ε piqq|
¤ A1piMq| � |qpiq 
 JA,q

ε piq|

This concludes the proof.

Lemma 6.1.14. Let q be a conjunctive query and q1 a subquery of q. Let B be any algorithm

that outputs a subset of answers to q1 (i.e. for every database i, Bpiq � q1piq). Let I be a
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uniformly at random chosen matching database for q, and I 1 � Iatomspq1q its restriction over

the atoms in q1.

If Er|BpI 1q|s ¤ γ � Er|q1pI 1q|s, then Er|qpIq 
 BpI 1q|s ¤ γ � Er|qpIq|s.

Proof. Let y � varspq1q and d � |y|. By symmetry, the quantity Er|σy�apqpIqq|s is indepen-

dent of a, and therefore equals Er|qpIq|s{nd. Notice that by construction σy�apBpi1qq � tau.
We now have:

Er|qpIq 
BpI 1q|s �
¸

aPrnsd

Er|σy�apqpIqq 
 σy�apBpI 1qq|s

�
¸

aPrnsd

Er|σy�apqpIqq|s � P pa P BpI 1qq

� �Er|qpIq|s{nd� � ¸
aPrnsd

Ppa P BpI 1qq

� Er|qpIq|s � Er|BpI 1q|s{nd

¤ Er|qpIq|s � pγ � Er|q1pI 1q|sq{nd

¤ γ � Er|qpIq|s

where the last inequality follows from the fact that Er|q1pI 1q|s ¤ nd (since for every database

i1, we have |q1pi1q| ¤ nd).

Proof of Theorem 6.1.11. Given an pε, rq-plan atomspqq � M0 � M1 � . . . � Mr, we define

M̂k �Mk �Mk�1, for k ¥ 1. Let A be an algorithm for q that uses pr � 1q rounds.

We start by applying Lemma 6.1.12 for algorithm A and the ε-good set M1. Then, for

every matching database iM̄1
� iM̂1

, there exists an algorithm Ap1q
iM̂1

for q{M̂1 that runs in r

rounds such that for every matching database iM1 we have:

|Apiq| ¤ |qpiq 
 JA,q
ε piq| � |Ap1q

iM̂1

piM1q|

We can iteratively apply the same argument. For k � 1, . . . , r � 1, let us denote Bk � Apkq
iMk
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the inductively defined algorithm for query q{Mk, and consider the ε-good set Mk�1. Then,

for every matching database iM̂k�1
there exists an algorithm Bk�1 � Apk�1q

iMk�1

for q{Mk�1 such

that for every matching database iMk�1
, we have:

|BkpiMk
q| ¤ |q{MkpiMk

q 
 JBk,q{Mk
ε piMk

q| � |Bk�1piMk�1
q|

We can now combine all the above inequalities for k � 0, . . . , r � 1 to obtain:

|Apiq| ¤ |qpiq 
 JA,q
ε piMr , iM̂1

, . . . , iM̂r
q|

� |q{M1piM1q 
 JB1,q{M1
ε piMr , iM̂2

, . . . , iM̂r
q|

� . . .
� |q{M r�1piMr�1q 
 JBr�1,q{Mr�1

ε piMr , iM̂r
q|

� |BrpiMrq| (6.4)

We now take the expectation of (6.4) over a uniformly chosen matching database I and

upper bound each of the resulting terms. Observe first that for all k � 0, . . . , r we have

χpq{Mkq � χpqq, and hence, by Lemma 4.2.2, we have Er|qpIq|s � Er|pq{MkqpIMk
q|s.

We start by analyzing the last term of the equation, which is the expected output of an

algorithm Br that uses one round to compute q{M r. By the definition of τ�pMq, we have

τ�pq{M rq ¥ τ�pMq. Since the number of bits received by each processor in the first round

of algorithm Br is at most r� 1 times the bound for the original algorithm A, we can apply

Theorem 4.2.1 to obtain that:

ErBrpIMrqs ¤ p

� pr � 1qL
τ�pq{M rqM


τ�pq{Mrq

Er|pq{M rqpIMrq|

¤ p

� pr � 1qL
τ�pq{M rqM


τ�pMq

Er|qpIq||

We next bound the remaining terms. Note that IMk�1
� pIMr , IM̂k

, . . . , IM̂r
q and consider
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the expected number of tuples in J � J
Bk�1,q{Mk�1
ε pIMk�1

q. The algorithm Bk�1 � Apk�1q
IMk�1

itself depends on the choice of IMk�1
; still, we show that J has a small number of tuples. Every

subquery q1 of q{Mk�1 that is not in Γ1
ε (and hence contributes to J) has τ�pq1q ¥ τ�pMq.

For each fixing IMk�1
� iMk�1

, the expected number of tuples produced for subquery q1 by

Bq1 , where Bq1 is the portion of the first round of Apk�1q
iMk�1

that produces tuples for q1, satisfies

Er|Bq1pIMk�1
q|s ¤ γpq1q � Er|q1pIMk�1

q|s, where

γpq1q � p

�pr � 1qL
τ�pq1qM


τ�pMq

since each processor in a round of Apk�1q
iMk�1

(and hence Bq1) receives at most r � 1 times the

communication bound for a round of A. We now apply Lemma 6.1.14 to derive

Er|qpIq 
Bq1pIMk�1
q|s � Er|pq{Mk�1qpIMk�1

q 
Bq1pIMk�1
q|s

¤ γpq1q � Er|pq{Mk�1qpIMk�1
q|s

� γpq1q � Er|qpIq|s.

Averaging over all choices of IMk�1
� iMk�1

and summing over the number of different

queries q1 P Spq{Mk�1q, where we recall that Sεpq{Mk�1q is the set of all minimal connected

subqueries q1 of q{Mk�1 that are not in Γ1
ε, we obtain

Er|qpIq
JAk�1,q{Mk�1
ε pIMk�1

q|s ¤
¸

q1PSεpq{Mk�1q

γpq1q � Er|qpIq|s

Combining the bounds obtained for the r � 1 terms in (6.4), we conclude that Er|ApIq|s is

at most

�
�� 1

τ�pq{M rq


τ�pMq

�
ŗ

k�1

¸
q1PSεpq{Mk�1q

�
1

τ�pq1q

τ�pMq

�
�pr � 1qL

M


τ�pMq

p � Er|qpIq|s
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� βpq,Mq �
�pr � 1qL

M


τ�pMq

p � Er|qpIq|s

which proves Theorem 6.1.11.

6.1.3 Application of the Lower Bound

We show now how to apply Theorem 6.1.8 to obtain lower bounds for several query classes,

and compare the lower bounds with the upper bounds.

The first class is the queries Lk, where the following corollary is a straightforward appli-

cation of Theorem 6.1.8 and Lemma 6.1.6.

Corollary 6.1.15. Any tuple-based MPC algorithm that computes the query Lk (on matching

databases) with load L � OpM{p1�εq requires at least rlogkε ks rounds of computation.

Observe that this gives a tight lower bound for Lk, since in the previous section we showed

that there exists a query plan with depth rlogkε ks and load OpM{p1�εq.
Second, we give a lower bound for tree-like queries, and for that we use a simple obser-

vation:

Proposition 6.1.16. Let q be a tree-like query, and q1 be any connected subquery of q. Any

algorithm that computes q1 with load L needs at least as many rounds to compute q with the

same load.

Proof. Given any tuple-based MPC algorithm A for computing q in r rounds with maximum

load L, we construct a tuple-based MPC algorithm A1 that computes q1 in r rounds with at

most load L. A1 will interpret each instance over q1 as part of an instance for q by using the

relations in q1 and using the identity permutation (Sj � tp1, 1, . . .q, p2, 2, . . .q, . . .u) for each

relation in qzq1. Then, A1 runs exactly as A for r rounds; after the final round, A1 projects

out for every tuple all the variables not in q1. The correctness of A1 follows from the fact

that q is tree-like.
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Define diampqq, the diameter of a query q, to be the longest distance between any two

nodes in the hypergraph of q. In general, radpqq ¤ diampqq ¤ 2 radpqq. For example,

radpLkq � tk{2u, diampLkq � k and radpCkq � diampCkq � tk{2u.

Corollary 6.1.17. Any tuple-based MPC algorithm that computes a tree-like query q (on

matching databases) with load L � OpM{p1�εq needs at least rlogkεpdiampqqqs rounds.

Proof. Let q1 be the subquery of q that corresponds to the diameter of q. Notice that q1 is a

connected query, and moreover, it behaves exactly like Ldiampqq. Hence, by Corollary 6.1.15

any algorithm needs at least rlogkεpdiampqqqs to compute q1. By applying Proposition 6.1.16,

we have that q needs at least that many rounds as well.

Let us compare the lower bound rlow � rlogkεpdiampqqqs and the upper bound rup �
rlogkεpradpqqqs � 1 from Lemma 6.1.4. Since diampqq ¤ 2radpqq, we have that rlow ¤ rup.

Additionally, radpqq ¤ diampqq implies rup ¤ rlow � 1. Thus, the gap between the lower

bound and the upper bound on the number of rounds is at most 1 for tree-like queries.

When ε   1{2, these bounds are matching, since kε � 2 and 2radpqq � 1 ¤ diampqq for

tree-like queries.

Third, we study one instance of a non tree-like query, namely the cycle query Ck. The

lemma is a direct application of Lemma 6.1.7.

Lemma 6.1.18. Any tuple-based MPC algorithm that computes the query Ck (on matching

databases) with load L � OpM{p1�εq requires at least tlogkεpk{pmε � 1qqu� 2 rounds, where

mε � t2{p1� εqu.

For cycle queries we also have a gap of at most 1 between this lower bound and the upper

bound in Lemma 6.1.4.

Example 6.1.19. Let ε � 0 and consider two queries, C5 and C6. In this case, we have

kε � mε � 2, and radpC5q � radpC6q � 2.

For query C6, the lower bound is then tlog2p6{3qu� 2 � 3 rounds, while the upper bound

is rlog2p3qs� 1 � 3 rounds. Hence, in the case of C6 we have tight upper and lower bounds.
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For query C5, the upper bound is again rlog2p3qs�1 � 3 rounds, but the lower bound becomes

tlog2p5{3qu � 2 � 2 rounds. The exact number of rounds necessary to compute C5 is thus

open.

Finally, we show how to apply Corollary 6.1.15 to show that transitive closure requires

many rounds. In particular, we consider the problem Connected-Components, for which,

given an undirected graph G � pV,Eq with input a set of edges as a relation Rpx, yq, the

requirement is to label the nodes of each connected component with the same label, unique

to that component. More formally, we want to compute an output relation Opx, cq, such that

any two vertices x, y have the same label c if and only if they belong in the same connected

component.

Theorem 6.1.20. Let G be an input graph of size M . For any ε   1, there is no algorithm

in the tuple-based MPC model that computes Connected-Components with p processors

and load L � OpM{p1�εq in fewer than oplog pq rounds.

The idea of the proof is to construct input graphs for Connected-Components whose

components correspond to the output tuples for Lk for k � pδ for some small constant δ

depending on ε and use the round lower bound for solving Lk. Notice that the size of the

query Lk is not fixed, but depends on the number of processors p.

Proof. Since larger ε implies a more powerful algorithm, we assume without loss of generality

that ε � 1� 1{t for some integer constant t ¡ 1. Let δ � 1{p2tpt� 2qq. The family of input

graphs and the initial distribution of the edges to servers will look like an input to Lk, where

k � tpδu. In particular, the vertices of the input graph G will be partitioned into k � 1 sets

P1, . . . , Pk�1, each partition containing m{k vertices. The edges of G will form permutations

(matchings) between adjacent partitions, Pi, Pi�1, for i � 1, . . . , k. Thus, G will contain

exactly k � pm{kq � m edges. This construction creates essentially k binary relations, each

with m{k tuples and size Mk � pm{kq logpm{kq.
Since k   p, we can assume that the adversary initially places the edges of the graph so

that each server is given edges only from one relation. It is now easy to see that any tuple-
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based algorithm in MPC that solves Connected-Components for an arbitrary graph G of

the above family in r rounds with load L implies an pr�1q-round tuple-based algorithm with

the same load that solves Lk when each relation has size M . Indeed, the new algorithm runs

the algorithm for connected components for the first r rounds. It then uses an additional

round to perform a k-way star join on the labels of the vertices so as to obtain the output

of the join query Lk (Since each tuple in Lk corresponds exactly to a connected component

in G, the join will recover all the tuples of Lk.) This can be achieved in a single round by

hashing each tuple Opx, cq according to c; because each label occurs exactly pδ times, there

will be no skew during hashing and the load for the final round will be OpM{pq.

Since the query size is not independent of the number of servers p, we have to carefully

compute the constants for our lower bounds. Consider an algorithm for Lk with load L ¤
cM{p1�ε, where M � m logpmq. Let r � rlogkε ks � 2. Observe also that kε � 2t since

ε � 1� 1{t.

We will use the pε, rq-plan M for Lk presented in the proof of Lemma 6.1.6, apply

Theorem 6.1.11, and compute the factor βpLk,Mq. First, notice that each query Lk{M j for

j � 0, . . . , r is isomorphic to Lk{kjε . Then, the set SεpLk{kjεq consists of at most k{kjε paths

q1 of length kε � 1. By the choice of r, Lk{M r is isomorphic to L` where kε � 1 ¤ `   k2
ε .

Further, we have that τ�pMq � τ�pLkε�1q � rpkε � 1q{2s � t� 1 since kε � 2t.

Thus, we have

βpLk,Mq �
�

1

τ�pLk{M rq


τ�pMq

�
ŗ

j�1

¸
q1PSεpq{Mk�1q

�
1

τ�pq1q

τ�pMq

¤ p1� εqτ�pMq

�
1�

ŗ

j�1

k

kj�1
ε

�

¤ p2k � 1qp1� εqτ�pMq.

Observe now that M{Mk � 1{p1{k � logpkq{pk logpmqqq ¤ 2k, assuming that m ¥ p2δ.

Consequently, Theorem 6.1.11 implies that any tuple-based MPC algorithm using at most
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rlogkε ks � 1 rounds reports at most the following fraction of the required output tuples for

the Lk query:

βpLk,Mq � p
�pr � 1qL

Mk


τ�pMq

¤ p2k � 1qp2ckpr � 1q{tqτ�pMq � p1�τ�pMqp1�εq

¤ c1kt�2plog2 kqc
2 � p1�p1�tqp1�εq

¤ c1pδ log2 pqc
2 � pδpt�2q�1�p1�tqp1�εq

� c1pδ log2 pqc
2 � pδpt�2q�1{t

� c1pδ log2 pqc
2 � p�1{2t

where c, c2 are constants. Since t ¡ 1, the fraction of the output tuples is op1q as a function

of the number of processors p. This implies that any algorithm that computes Connected-

Components on G requires at least rlogkεtp
δus� 2 � Ωplog pq rounds.

6.2 Input Data with Skew

In this section, we briefly discuss the case of input data with skew. We first present a back-of-

the-envelope calculation on the lower bound for the tuple-based MPC model, in the scenario

where all relations have size equal to M .

Given a query q, we can construct a worst-case instance I with the maximum possible

output, according to the construction of [22]. We know then that the output will be Mρ� ,

where ρ� is the maximum edge cover for q. Now, assume that algorithm A computes q

with load L (in tuples) in r rounds. Since each server receives at most r � L tuples from

each relation Sj, we can use the AGM bound from [22] to argue that the total number of

output tuples will be at most ppr � Lqρ� . Hence, if A outputs all tuples, we must have that

ppr � Lqρ� ¥ Mρ� , or equivalently L ¥ M{prp1{ρ�q. We should note here that this is not a

formal proof, and that also we have considered only deterministic algorithms; we present this

idea in order to give the reader some intuition about what kind of lower bounds one should

expect in the worst case. For the example of the triangle query C3, since the maximum edge
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cover is ρ� � 3{2, we obtain a lower bound ΩpM{p2{3q for a constant number of rounds.

We will next show that we can in fact match this informal bound for the triangle query

C3 � S1px1, x2q, S2px2, x3q, S3px3, x1q

in 2 rounds, up to logarithmic factors. We will present an algorithm that achieves an

ÕpM{p2{3q load under any input distribution, in the case where all relations have the same

size M . This is a worst-case analysis, in the sense that there will be inputs where we will be

able to do better (in the previous section we showed that we can compute C3 on matching

databases in 2 rounds with load OpM{pq), but we can guarantee that with any input we can

do at least as well as the upper bound of ÕpM{p2{3q.
To build the algorithm, we need a result on computing the join S1px, zq, S2py, zq in a

single round, for the case where skew appears only in one of the two relations.

Lemma 6.2.1. Let q � S1px, zq, S2py, zq, and let M1 and M2 be the relation sizes of S1, S2

respectively. Let M � maxtM1,M2u. If the degree of every value of the variable z in S1 is

at most M{p, then we can compute q in a single round with load ÕpM{pq.

Proof. The algorithm is based on the ideas that we presented in Subsection 5.2.1 for com-

puting star queries with skew. We say that a value h is a heavy hitter in S2 if the degree of

h is MS2pzq ¥M{p. By our assumption, there are no heavy hitter values in S1.

For the values h that are not heavy hitters in S2, we can compute the join by applying

the vanilla HC algorithm; the load analysis of Section A.2 will give us a load of ÕpM{pq with

high probability in this case.

For every heavy hitter h, the algorithm computes the subquery qrh{zs � S1px, hq, S2py, hq,
which is equivalent to computing the residual query qz � S 11pxq, . . . , S 12pyq, where S 11pxq �
S1px, hq and S 12pyq � S2py, hq. We know that |S 12| � MS2phq and |S 11| ¤ M{p by our

assumption. The algorithm now allocates ph � rp �MS2phq{M s exclusive servers to compute

qrh{zs for each heavy hitter h. To compute qrh{zs with ph we simply use the simple broadcast
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join that assigns a share of 1 to x and 0 to y. A simple analysis will give us that the load

for each heavy hitter h is

Õ

� |S 12|
ph

� |S 11|


� Õ

�
MS2phq

pMS2phq{M
�M{pq



� ÕpM{pq

Finally, observe that
°
h ph ¤ 2p, hence we have used an appropriate amount of available

servers.

Hence, we can optimally compute joins in a single round, even in the presence of one-sided

skew. We can now present the main algorithm for computing triangles.

Proposition 6.2.2. The triangle query C3 � S1px1, x2q, S2px2, x3q, S3px3, x1q on input with

sizes M1 � M2 � M3 � M can be computed by an MPC algorithm in 2 rounds with

ÕpM{p2{3q maximum load, under any input data distribution.

Proof. We say that a value h is heavy if for some relation Sj, we have Mjphq ¡M{p1{3. We

first compute the answers for the tuples that have no heavy values. Indeed, if for every value

we have that the degree is at most M{p1{3, then the load analysis of Section A.2 tells us that

we can compute the output in a single round with load ÕpM{p2{3q using the HC algorithm.

Thus, it remains to output the tuples for which at least one variable has a heavy value.

Without loss of generality, consider the case where variable x1 has heavy values and observe

that there are at most p1{3 heavy x1-values. Let R1
1px1, x2q be the subset of relation R1 where

x1 takes only heavy values.

In the first round, the algorithm computes the simple join R1
1px1, x2q, R2px2, x3q. By

construction, the degree of any value of x2 in R1
1 is at most p1{3. Thus, assuming that p1{3 ¤

M{p (equivalently M ¥ p4{3), we can apply Lemma 6.2.1 to obtain that we can compute the

join with load ÕpM{pq. The resulting relation R12px1, x2, x3q � R1
1px1, x2q, R2px2, x3q has

size at most p1{3M .

In the second round, we compute the join R12px1, x2, x3q, R3px1, x3q, where |R12| ¤ p1{3M

and |R3| � M . Notice that the join is on the pair of variables px1, x3q, which has a degree



96

of 1 in relation R3 (since we use set semantics). Hence, we can apply again Lemma 6.2.1 to

obtain that we can compute the join in one round with load Õpp1{3M{pq � ÕpM{p2{3q.

The reader may notice that the 2-round algorithm achieves a better load than the 1-

round algorithm in the worst-case scenario. Indeed, in the previous section we proved that

there exist instances for which we can not achieve load better than OpM{p1{2q in a single

round. By using an additional round, we can beat this bound and achieve a lower load. This

confirms our intuition that with more rounds we can reduce the maximum load, even in the

case of data with skew.

It is an intriguing question to explore whether this approach can be extended to other

conjunctive queries. What is the minimum number of rounds that are needed for any query

to achieve a worst-case optimal load?
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Chapter 7

MPC AND THE EXTERNAL MEMORY MODEL

In this chapter, we explore the connection of the MPC model with the external memory

model, which is a computational model first introduced in [17] by Aggarwal and Vitter.

7.1 The External Memory Model

In the external memory model, we model computation in the setting where the input data

does not fit into main memory, and the dominant cost is reading the data from the disk into

the memory and writing data on the disk.

Formally, we have an external memory (disk) of unbounded size, and an internal memory

(main memory) that consists of M words. The processor can only use data stored in the

internal memory to perform computation, and data can be moved between the two memories

in blocks of consecutive B words. The I/O complexity of an algorithm is the number of

input/output blocks that are moved during the algorithm, both from the internal memory

to the external one, and vice versa.

We will use the result from [78] that the I/O complexity for sorting n elements in the

external memory model is sortpnq � Opn logpn{Bq
B logM

� n
B
q.

The external memory model has been recently used in the context of databases to analyze

algorithms for large datasets that do not fit in the main memory, with the main application

being triangle listing [34, 49, 67, 48]. In this setting, the input is an undirected graph, and

the goal is to list all triangles in the graph. In [67] and [48], the authors consider the related

problem of triangle enumeration, where instead of listing triangles (and hence writing them

to the external memory), for each triangle in the output we call an emitpq function. The best

result comes from [48], where the authors design a deterministic algorithm that enumerates



98

triangles in Op|E|3{2{p?MBqq I/Os, where E is the number of edges in the graph. The

authors in [48] actually consider a more general class of join problems, the so-called Loomis-

Whitney enumeration. We should also mention [72], where the author presents external

memory algorithms for enumerating subgraph patterns in graphs other than triangles.

The problem we consider in the context of external memory algorithms is a generalization

of triangle enumeration. Given a full conjunctive query q, we want to enumerate all possible

tuples in the output, by calling the emitpq function for each tuple in the output of query q.

We assume that each tuple in the input can be represented by a single word.

7.2 From MPC to External Memory Algorithms

In this section, we will show how a parallel algorithm in the MPC model can help us construct

an external memory algorithm. The idea behind the construction is that the distribution

of the data to the servers can be used to decide which input data will be loaded into the

memory; hence, the load L will correspond to the size of the internal memory M . Similarities

between hash-join algorithms used for parallel processing and the variants of hash-join used

for out-of-core processing have been already known, where the common theme is to create

partitions and then process them one at a time. Here we generalize this idea to the processing

of any conjunctive query in a rigorous way.

Let A be an MPC algorithm that computes query q over input I using r rounds with

load LpI, pq. We assume that the communication for algorithm A takes a particular form:

each tuple t during round k is sent to a set of servers Dpt, kq, where D depends only on the

data statistics that are available to the algorithm from the start. Such statistical information

can be the size of the relations, or even information about the heavy hitters in the data.1

Observe that this is the tuple-based MPC model, with the additional assumption that we

restrict the communication in the first round to be tuple-based as well. All of the algorithms

that we have presented in this dissertation satisfy the above assumption. We will show how

1Even if this information is not available initially to the algorithm, we can easily obtain it by performing
a single pass over the input data, which will cost Op|I|{Bq.
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to construct an external memory algorithm B based on the algorithm A.

Simulation. The external memory algorithm B simulates the computation of algorithm

A during each of the r rounds: round k, for k � 1, . . . , r simulates the total computation of

the p servers during round k of A. We pick a parameter p for the number of servers that we

show how to compute later. The algorithm will use the tuple structure pt, sq to denote that

tuple t resides in server s � 1, . . . , p.

To initialize the algorithm B, we will first assign the input data to the p servers (we can

do this in any arbitrary way, as long as the data is equally distributed). More precisely, we

read each tuple t of the input relations and then produce a tuple pt, sq, where s � 1, . . . , p

in a round-robin fashion, such that in the end each server is assigned |I|{B data items. To

achieve this, we load each relation in chunks of size B in the memory.

After the initialization, the algorithm B, for each round k � 1, . . . , r, performs the

following steps:

1. All tuples, that will be of the form pt, sq are sorted according to the second attribute

s, which is the destination server.

2. We load the tuples pt, sq in memory in chunks of size M , in the order by which they

were sorted in the external memory. If we choose p such that r �LpI, pq ¤M , we can fit

in the internal memory all the tuples of any server s at round k. Hence, we first read

into the internal memory the tuples for server 1, then server 2, and so on. For each

server s, we perform the computation in the internal memory replicating the execution

of algorithm A in server s at round k.

3. For each tuple t in server s (including the ones that are newly produced), we compute

the tuples tpt, s1q | s1 P Dpt, kqu, and we write them into the external memory in blocks

of size B.
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In other words, the writing into the internal memory and to the external memory sim-

ulates the communication step, where data is exchanged between servers. The algorithm B

produces the correct result, since by choosing p in the right way we have guaranteed that we

can load enough data in the main memory to simulate the local computation of A at each

server. Observe that we do not need to write the final result to the external memory, since

at the end of the last round we can just call emitpq for each tuple in the output.

Let us now look at the choice for p; recall that we must make sure that r � LpI, pq ¤ M .

Hence, we must choose po such that

po � min
p
tLpI, pq ¤M{ru.

We next analyze the I/O cost of algorithm B for this choice of po.

Analysis. The initialization cost for the algorithm is |I|{B. Let us now analyze the cost

for a given round k � 1, . . . , r.

To analyze the cost, we will measure first the size of the data that will be sorted and then

loaded into memory at round k. For this, observe that at every round of algorithm B, the

total amount of data that is communicated is at most po �LpI, poq. Hence, the total amount

of data that will be loaded into memory will be at most k � po � LpI, poq ¤ poM , from our

definition of po.

Thus, the first step of sorting the data has a cost of sortppoMq in I/Os. The second step

of loading the tuples into memory has a cost of poM{B, since we are loading the data using

chunks of size B; we can do this since the data has been sorted according to the destination

server. As for the third step of writing the data into the external memory, observe that the

total number of tuples written will be equal to the number of tuples communicated to the

servers at round k � 1, which will be at most poLpI, poq ¤ poM{r. Hence, the cost will be

poM{prBq I/Os.

Summing the I/O cost of all three steps and over the r rounds, we obtain that the I/O
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cost of the constructed algorithm B will be at most:

O

�
|I|
B
�

ŗ

k�1

�
2poM

B
� poM

rB
� poM logppoM{Bq

B logpMq

�

� O

� |I|
B
� p2r � 1qpoM

B
� rpoM logppoM{Bq

B logpMq



We have thus shown the following theorem.

Theorem 7.2.1. Let A be a tuple-based MPC algorithm that computes query q over input

I using r rounds with load LpI, pq. Then, there exists an external memory algorithm B that

computes q over the same input I with I/O cost:

O

� |I|
B
� p2r � 1qpoM

B
� rpoM logppoM{Bq

B logpMq



where po � minptLpI, pq ¤M{ru.

To make sense of the above formula, we can simplify the above I/O cost in the context

of computing conjunctive queries. In all of our algorithms we used a constant number of

rounds r, and the load is typically LpI, pq ¥ |I|{p. Hence, we can rewrite the I/O cost as

Õ ppoM{Bq, where the Õ notation hides some polylogarithmic factors.

We next present two applications of Theorem 7.2.1 to query processing in the external

memory model.

Example 7.2.2. Recall that we have showed in Chaoter 4 that we can compute any CQ q on

input without skew in a single round with load L � Õpp±jm
uj
j {pq1{

°
j ujq for any fractional

edge packing u. By choosing

po � Õ

�¹̀
j�1

�mj

M

	uj�

the application of Theorem 7.2.1 gives an algorithm in the external memory model where the

number of I/Os is:

Õ

�
M

B
�
¹̀
j�1

�mj

M

	uj�
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For example, if we apply this to the cycle query Ck when all relation sizes are equal to m, we

obtain an algorithm with I/O cost Õp mk{2

BM1{2 q.

Example 7.2.3. In Section 6.2, we presented a 2-round algorithm that computes triangles

for any input data with load L � Opm{p3{2q, in the case where all relations have size m. By

applying Theorem 7.2.1, we obtain an external memory algorithm that computes triangles

with Õpm3{2{pBM1{2qq I/O cost. Notice that this cost matches the I/O cost for triangle

computation from [67] up to polylogarithmic factors.

We will end this section with some observations and discussion. First, notice that the

above two examples obtain an algorithm that has an I/O cost with polylogarithmic factors,

which are not present when we design directly external memory algorithms, as in [67, 48]. One

reason for this discrepancy is that in our design of parallel algorithms, we apply randomized

hashing to distribute the load, hence the maximum load can exceed the expected load by

some logarithmic factor. On the other hand, in the external memory model we can monitor

the load because of the centralized nature of computation and hence we can make sure

that the load always fits in memory. An interesting direction for future research is whether

there is a generic mechanism for load distribution that translates better between the two

computational models.

A different question is whether we can obtain optimal algorithms for the external mem-

ory model by simulating MPC algorithms. A 1-round algorithm cannot give an optimal

external memory algorithm, as in the case of triangle computation the 1-round algorithm

with worst-case input has optimal load Õpm{?pq, which implies a Õpm2{pBMqq external

memory algorithm. However, we showed in the example that a 2-round algorithm implies

a better algorithm with load Õpm3{2{pBM1{2qq, which is essentially optimal over worst-case

inputs. But can we obtain an optimal external memory algorithm using the simulation of a

multi-round MPC algorithm for r ¥ 2?

This question is also tied to whether there exists a reverse simulation: given an external

memory algorithm B, can we construct an MPC algorithm A that simulates the execution
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of B? Given the centralized and sequential nature of the external memory model, it is hard

to imagine that such a reduction exists. However, the computational task of answering

conjunctive queries is highly parallel (since the complexity is in AC0), which means it is

possible that the optimal algorithm for the external memory model can have highly parallel

structure that mimics the execution in the MPC model. We leave this question as an exciting

direction for future research.
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Chapter 8

CONCLUSION AND FUTURE OUTLOOK

In this dissertation, we propose a new approach in order to model query processing in

modern massively parallel systems, and introduce the MPC model. This model captures

the basic parameters of parallel query processing algorithms: the number of synchronization

steps, and the communication complexity, which we measure as the maximum amount of

data, or load, that can be received by any processor. Using the framework of the MPC

model, we explore the tradeoff between the number of rounds and maximum load for the

computation of multiway joins. Our results include novel algorithms and techniques to

handle data skew, as well as lower bounds that match our upper bound for several classes of

queries and input distributions. We have thus painted a large part of the landscape for join

processing in massively parallel systems, even though several questions still remain open,

especially regarding computing queries on input data with skew and worst-case analysis of

the load.

In the next few sections, we discuss some of the open questions in this work, and describe

some exciting directions for research that this dissertation has opened.

8.1 From Theory to Practice

Several of the algorithmic ideas presented in this work are already implemented as part of

the Myria data management system [4]. In [33], the authors show how to implement the

HyperCube algorithm in a modern parallel system, and demonstrate that it outperforms

in several cases traditional query plans that decompose the execution into pipelined hash-

joins, or use semi-join methods. Transitioning from the theory to a practical algorithm

presents several challenges, such as rounding the shares to integer numbers, and handling
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the communication efficiently.

An interesting research direction is whether the idea of computing multiple joins in a

single step can be incorporated in a parallel query optimizer, in which case the HyperCube

algorithm will function as a new operator in the query plan. Additionally, one can ask

whether the vanilla HyperCube algorithm can handle the skew in a practical setting with

real-world data, or it is necessary to employ our skew-handling techniques to reduce the

maximum load and avoid stragglers.

8.2 Beyond Joins

The focus of this work was the study of the class of full conjunctive queries in the MPC

model. However, such queries cover only a relatively small (although important) class of data

processing tasks. Investigating the computation of larger classes of queries, such as queries

with projections, unions, aggregation and negation is an interesting direction to explore in

the future. For example, when computing queries with projections (such as boolean queries),

one can use known techniques such as tree-decompositions of queries, which translate to early

projection of variables: this can potentially reduce communication and achieve a better load

than just the naive algorithm of computing the answer to the full query and then performing

a final step that aggregates all the tuples and projects out the other variables. As another

example, consider the query q � Rpx, yq, Spyq, and notice that one can use the vanilla

HyperCube algorithm and obtain a correct algorithm for q; but now is this algorithm

optimal or can we use some other technique? Several other interesting classes of queries,

where some work has already been done, include:

• Theta-joins: these are a non-natural joins of the form Rpx, zq, Spx, z1q, where an ar-

bitrary condition θpz, z1q is imposed, such as z � z1 or z ¤ z1 (see [65] for parallel

algorithms for theta joins in the context of MapReduce). A common application in

this context is the band-join, where the condition is of the form |z � z1| ¤ c for some

constant c.
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• Skyline queries: given a multidimensional set, we want to find the points for which no

other point exists that is at least as good along every dimension [29]. In [12], we study

skyline computation in a model very similar to the MPC model (where each round has

an additional phase where a small amount of data can be communicated). We show

that one can compute the skyline of M points with load OpM{pq using two rounds, but

we leave open whether the skyline can be computed in one round for any dimension

bigger than 3.

• Datalog queries: this class of queries adds iteration/recursion to relational algebra,

which as we have seen is often a desired property for modern data management systems.

The parallel evaluation of Datalog has been studied in the context of the PRAM model

and circuit complexity [75, 53] and other models [43]. More recently, [70, 16] shed

some light in the computation of recursive queries in the MapReduce framework. The

fundamental question is again to identify the tradeoff between the load and the number

of rounds in the MPC model. Recall here that we have showed in Chapter 6 that we

need Ωplog pq rounds to compute the connected components with a non-trivial load;

hence, we have a non-constant number of rounds, which implies that we need different

techniques to analyze the behavior of such recursive tasks.

8.3 Beyond the MPC model

The MPC model captures the computation for systems that have a synchronous model,

where the computation is split into well-defined rounds followed by a synchronization barrier.

However, not all systems choose this architecture; systems like GraphLab [58], or Myria [4]

can run asynchronously. In an asynchronous system, the lack of coordination means that the

data is exchanged without any bottleneck, but on the other hand makes proof of correctness

and analysis of complexity more challenging tasks.

There have been recent efforts [20, 21] to describe the class of queries that can be ex-

pressed in such a distributed asynchronous system; however, this line of work focuses on

the correctness of the algorithms, while ignoring the cost of communication. A fascinating
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research direction is to look at how how we can design and analyze asynchronous algorithms

that are not only provably correct, but also provably efficient in terms of the communication

complexity.
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Appendix A

ADDITIONAL MATERIAL

A.1 Probability Bounds

In this section, we show how to obtain lower bounds on the probability of failure using

bounds on the expected output. We start by proving a lemma regarding the distribution of

the query output for random matching databases.

Lemma A.1.1. Let I be a random matching database for a connected conjunctive query q,

and let µ � Er|qpIq|s. Then, for any α P r0, 1q we have:

P p|qpIq| ¡ αµq ¥ p1� αq2 µ

µ� 1

Proof. To prove the bound, we will use the Paley-Zygmund inequality for the random variable

|qpIq|:
P p|qpIq| ¡ αµq ¥ p1� αq2 µ2

Er|qpIq|2s
To bound the quantity Er|qpIq|2s, we construct a query q1 that consists of q plus

a copy of q with new variables. For example, if q � Rpx, yq, Spy, zq, we define q1 �
Rpx, yq, Spy, zq, Rpx1, y1q, Spy1, z1q. We now have:

Er|qpIq|2s � Er|q1pIq|s �
¸

a,a1Prnsk

¹̀
j�1

P paj P Sj ^ a1j P Sjq

�
¸

a�a1Prnsk

¹̀
j�1

P paj P Sj ^ a1j P Sjq �
¸

aPrnsk

¹̀
j�1

P paj P Sjq

�
¸

a�a1Prnsk

¹̀
j�1

P paj P SjqP pa1j P Sj | aj P Sjq � µ
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Now, observe that when a, a1 differ in all positions, since the database is a matching,

the event a1j P Sj is independent of the event aj P Sj for every relation Sj; in this case,

P pa1j P Sj | aj P Sjq � P pa1j P Sjq for every Sj. On the other hand, if a, a1 agree in at least

one position, then since q is connected it will be that P pa1j P Sj | aj P Sjq � 0 for some

relation Sj. Thus, we can write:

Er|qpIq|2s ¤
¸

a�a1Prnsk

¹̀
j�1

P paj P SjqP pa1j P Sjq � µ

� pn2k � nkq
¹
j

pmj{najq2 � µ

� �1� n�k�µ2 � µ
¤ µ2 � µ

For a deterministic algorithm A that computes the answers to a query q over a randomized

instance I, let fail denote the event that |qpIqzApIq| ¡ 0, i.e. the event that the algorithm

A fails to return all the output tuples. The next lemma shows how we can use a bound on

the expectation to obtain a bound on the probability of failure.

Lemma A.1.2. Let I be a random matching database for a connected query q. Let A be a

deterministic algorithm such that Er|ApIq|s ¤ fEr|qpIq|s, where f ¤ 1. Let µ � Er|qpIq|s
and let Cα denote the event that |qpIq| ¡ αµ. Then,

P pfail | C1{3q ¥ 1� 9f

Proof. We start by writing

P pfail | Cαq � P p|qpIqzApIq| ¡ 0 | Cαq
¥ P p|ApIq| ¤ αµ | Cαq
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� 1� P p|ApIq| ¡ αµ | Cαq

Additionally, we have:

Er|ApIqs � Er|ApIq| | Cαs � P pCαq � Er|ApIq| |  Cαs � P p Cαq
¥ Er|ApIq| | Cαs � P pCαq

� P pCαq
8̧

t�tαµu�1

t � P p|ApIq| � t | Cαq

¥ P pCαqptαµu� 1qP p|ApIq| ¡ α | Cαq

Combining the above two inequalities, we can now write

P pfail | Cαq ¥ 1� Er|ApIq|s
ptαµu� 1qP pCαq ¥ 1� fµ

ptαµu� 1qP pCαq

We can now apply Lemma A.1.1 to obtain P pCαq � P p|qpIq| ¡ αµq ¥ p1 � αq2µ{pµ � 1q.
Thus,

P pfail | Cαq ¥ 1� fµ

tαµu� 1
� µ� 1

µp1� αq2 � 1� fpµ� 1q
ptαµu� 1qp1� αq2

We can now choose α � 1{3 to obtain that

P pfail | C1{3q ¥ 1� p9{4qf µ� 1

tµ{3u� 1

The final step is to show that the quantity µ�1
tµ{3u�1

is upper bounded by 4 for any (positive)

value of µ. We distinguish here two cases:

• If µ   3, then tµ{3u � 0. Thus, µ�1
tµ{3u�1

� µ� 1   4.

• If µ ¥ 3, we use the fact µ{3 ¤ tµ{3u � 1 to obtain that µ�1
tµ{3u�1

¤ pµ � 1q{pµ{3q �
3p1� 1{µq ¤ 3p1� 1{3q � 4.



119

This concludes the proof of the lemma.

A.2 Hashing

In this section, we present a detailed analysis of the behavior of the HyperCube algorithm

for input distributions with various guarantees. Throughout this section, we assume that a

hash function is chosen randomly from a strongly universal family of hash functions. Recall

that a strongly universal set of hash function is a set H of functions with range rps such that,

for any n ¥ 1, any distinct values a1, . . . , an and any bins B1, . . . , Bn P rps, we have that

P phpa1q � B1 ^ � � � ^ hpanq � Bnq � 1{pn, where the probability is over the random choices

of h P H.

A.2.1 Basic Partition

We start by examining the following scenario. Suppose that we have a set of weighted

balls which we hash-partition into p bins; what is the maximum load among all the bins?

Assuming that the sum of the weights is m, it is easy to see that the expected load for each

bin is m{p. However, this does not tell us anything about the maximum load. In particular,

in the case where we have one ball of weight m, the maximum load will always be m, which

is far from the expected load.

In order to obtain meaningful bounds on the distribution of the maximum load, we thus

have to put a restriction on the maximum weight of a ball. The following theorem provides

such a tail bound on the probability distribution.

Theorem A.2.1 (Weighted Balls in Bins). Let S be a set where each element i has weight wi

and
°
iPS wi ¤ m. Let p ¡ 0 be an integer. Suppose that for some α ¡ 0, maxiPStwiu ¤ m

αp
.

We hash-partition S into p bins. Then for any δ ¡ 0

P pmaximum weight of any bin ¥ p1� δqm
p
q ¤ p � e�αhpδq (A.1)

where hpxq � p1� xq lnp1� xq � x.
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Theorem A.2.1 immediately follows from the following lemma (which implies the bound

for a single bin), together with a union bound over all p bins.

Lemma A.2.2. Let I be an index set. Let p ¥ 2. Let w P RI satisfy w ¥ 0, ||w||1 ¤ m1,

and ||w||8 ¤ m8 � m1{pαpq. Let pYiqiPI be a vector of i.i.d. random indicator variables with

P pYi � 1q � 1{p. Then

P p
¸
iPI

wiYi ¡ p1� δqm1

p
q ¤ e�α�hpδq

where hpxq � p1� xq lnp1� xq � x.

We prove Lemma A.2.2 using Bennett’s inequality [27].

Theorem A.2.3 (Bennett’s Inequality). Let Xi be random variables such that ErXis � 0

and |Xi| ¤ d for all i P rns. Then, for all t ¥ 0,

P p
¸
iPrns

Xi ¡ tq ¤ exp

�
�
°
i VarpXiq
d2

� h
�

td°
i VarpXiq





where hpxq � p1� xq lnp1� xq � x.

of Lemma A.2.2. Let Zi � Yi � 1{p and Xi � wiZi. Then ErXis � wiErZis � 0 and

|Xi| � wi|Zi| ¤ wip1 � 1{pq ¤ ||w||8p1 � 1{pq � p1 � 1{pqm1

αp
. Also, VarpXiq � ErX2

i s �
w2
iErZ2

i s � w2
i pErY 2

i s � 2ErYis{p� 1{p2q � w2
i p1{p� 1{p2q.

Observe that the probability of the event
°
iPI wiYi ¡ p1 � δqm1{p is precisely the prob-

ability that
°
iPI Xi ¡ δm1{p. By setting d � p1 � 1{pqm1

αp
all the variables Xi satisfy the

condition |Xi| ¤ d in Bennett’s theorem, and therefore:

P p
¸
iPI

Xi ¡ tq ¤ exp

�
� t
d
� hpxq
x



where x � td°

iPI VarpXiq

We set t � δm1{p. Then we have x ¥ δ because:

¸
iPI

VarpXiq ¤
¸
iPI

w2
i p1{p� 1{p2q ¤ d

p

¸
iPI

wi ¤ dm1

p
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Observe that the derivative of hpxq is h1pxq � lnp1�xq. The function hpxq{x is increasing,

because phpxq{xq1 � pxh1pxq � hpxqq{x2 � px lnp1 � xq � p1 � xq lnp1 � xq � xq{x2 � px �
lnp1� xqq{x2 ¥ 0, and therefore hpxq{x ¥ hpδq{δ. This implies that

P p
¸
i

Xi ¡ tq ¤ exp

�
� t
d
� hpδq
δ



� exp

�
�m1

pd
� hpδq



¤ e�αhpδq

as required.

We also will find the following extension of Lemma A.2.2 to be useful.

Theorem A.2.4. Let I be an index set and p ¥ 2. Let pwpjqqj be a sequence of vectors

in RI satisfying wpjq ¥ 0, ||wpjq||1 ¤ m1, and ||wpjq||8 ¤ m8 � m1{pαpq. Suppose further

that ||°j w
pjq||1 ¤ km1. Let pYiqiPI be a vector of i.i.d. random indicator variables with

PpYi � 1q � 1{p. Then

P pDj
¸
iPI

w
pjq
i Yi ¡ p1� δqm1

p
q ¤ 2k � e�α�hpδq

where hpxq � p1� xq lnp1� xq � x.

The proof of this theorem follows easily from the following lemma.

Lemma A.2.5. Let pwpjqqj be a sequence of vectors in RI satisfying wpjq ¥ 0, ||wpjq||1 ¤
m1, and ||wpjq||8 ¤ m8. Suppose further that ||°j w

pjq||1 ¤ km1. Then, there exists a

sequence of at most 2k vectors up1q, . . . , up2kq P RI such that each up`q ¥ 0, ||up`q||1 ¤ m1,

and ||up`q||8 ¤ m8, and for every j, there is some ` P r2ks such that wpjq ¤ up`q, where the

inequality holds only if it holds for every coordinate.

Proof. The construction goes via the first-fit decreasing algorithm for bin-packing. Sort the

vectors wpjq in decreasing order of ||wpjq||1. Then greedily group them in bins of capacity m1.

That is, we begin with wp1q and continue to add vectors until we find the largest j1 such that°j1
j�1 ||wpjq||1 ¤ m1. Define up1q by u

p1q
i � max1¤j¤j1 w

pjq
i for each i P I. Now ||up1q|| ¤ m1



122

and ||up1q||8 ¤ maxj ||wpjq||8 ¤ m8. Moreover, for each j P r1, j1s, wpjq ¤ up1q by definition.

Then repeat beginning with wpj1�1q until the largest j2 such that
°j2
j�j1�1 ||wpjq||1 ¤ m1,

and define up2q by u
p2q
i � maxj1�1¤j¤j2 w

pjq
i for each i P I as before, and so on. Since the

contribution of each subsequent ||wpjq||1 is at most that of its predecessor, if it cannot be

included in a bin, then that bin is more than half full so we have ||up`q||1 ¡ m1{2 for all `.

Since
°
` ||up`q||1 ¤

°
j ||wpjq||1 ¤ km1, there must be at most 2k such up`q.

of Theorem A.2.4. We apply Lemma A.2.5 to the vectors wpjq to construct up1q, . . . , up2kq.

We then apply a union bound to the application of Lemma A.2.2 to each of the vectors up`q.

The total probability that there exists some ` P r2ks such that
°
iPI u

p`q
i Yi ¡ p1� δqm1{pαpq

is at most 2k � e�αhpδq. Now for each j, there is some ` such that wpjq ¤ up`q and hence°
iPI w

pjq
i Yi ¤

°
iPI u

p`q
i Yi. Therefore if there exists a j such that

°
iPI w

pjq
i Yi ¡ p1 � δqm1{p

then there exists an ` such that
°
iPI u

p`q
i Yi ¡ p1� δqm1{p.

A.2.2 HyperCube Partition

Before we analyze the load of the HC algorithm, we present some useful notation. Even

though the analysis in the main paper assumes that relations are sets, here we will give a

more general analysis for bags.

Let a U -tuple J be a function J : U Ñ rns|U |, where rns is the domain and U � rrs a set

of attributes. If J is a V -tuple and U � V then πUpJq is the projection of J on U . Let S be

a bag of rrs-tuples. Define:

mpSq �|S| the size of the bag S, counting duplicates

ΠUpSq �tπUpJq | J P Su duplicates are kept, thus |ΠUpSq| � |S|
σJpSq �tK P S | πUpKq � Ju bag of tuples that contain J

dJpSq �|σJpSq| the degree of the tuple J
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Given shares p1, . . . , pr, such that
±

u pu � p, let pU �
±

uPU pu for any attribute set

U . Let h1, . . . , hr be independently chosen hash functions, with ranges rp1s, . . . , rprs, re-

spectively. The hypercube hash-partition of S sends each element pi1, . . . , irq to the bin

ph1pi1q, . . . , hrpirqq.

HyperCube Partition without Promise

We prove the following:

Theorem A.2.6. Let S be a bag of tuples of rnsr such that each tuple in S occurs at most

m{pαrpq times, for some constant α ¡ 0. Then for any δ ¡ 0:

P

�
maximum size any bin ¡ p1� δq mpSq

minu pu



¤ r � p � e�α�hpδq

where the bin refers to the HyperCube partition of S using shares p1, . . . , pr.

Notice that there is no promise on how large the degrees can be. The only promise is

on the number of repetitions in the bag S, which is automatically satisfied when S is a set,

since it is at most one.

Proof. We prove the theorem by induction on r. If r � 1 then it follows immediately

from Theorem A.2.1 by letting the weight of a ball i be the number of elements in S containing

it. Assume now that r ¡ 1. We partition the domain rns into two sets:

Dsmall � ti | dr ÞÑipSq ¤ m{pαprqu and Dlarge � ti | dr ÞÑipSq ¡ m{pαprqu

Here r ÞÑ i denotes the tuple piq; in other words σr ÞÑipSq returns the tuples in S whose last (r-

th) attribute has value i. We then partition the bag S into two sets Ssmall, Slarge, where Ssmall

consists of tuples t where πrptq P Dsmall, and Slarge consists of those where πrptq P Dlarge. The

intuition is that we can apply Theorem A.2.1 directly to show that Ssmall is distributed well

by the hash function hr. On the other hand, there cannot be many i P Dlarge, in particular
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|Dlarge| ¤ αpr, and hence the projection of any tuple in Slarge onto rr� 1s has at most Dlarge

extensions in Slarge. Thus, we can obtain a good inductive distribution of Slarge onto rr� 1s
using h1, . . . , hr�1.

Formally, for U � rrs and T � S, let MUpT q denote the maximum number of tuples

of T that have any particular fixed value under hU � �jPUhj. With this notation, MrrspSq
denotes the the maximum number of tuples from S in any bin. Hence, our goal is to show

that P pMrrspSq ¡ p1� δqmpSq{minuPrrs puq   r � p � e�αhpδq. Now, by Theorem A.2.1,

P pMtrupSsmallq ¡ p1� δqmpSsmallq{prq ¤ p � e�αhpδq

and consequently

P pMrrspSsmallq ¡ p1� δqmpSsmallq{min
uPrrs

puq ¤ p � e�αhpδq.

Let S 1 � Πrr�1spSlargeq. Since projections keep duplicates, we have mpS 1q � mpSlargeq and

Mrr�1spS 1q � Mrr�1spSlargeq. By the assumption in the theorem statement, each tuple in S,

and hence in Slarge, occurs at most m{pαrpq times. Then, since |Dlarge| ¤ αpr, each tuple

in S 1 occurs at most m{pαr�1p1q times where p1 � ±uPrr�1s pu. Therefore we can apply the

inductive hypothesis to S 1 to yield

P pMrr�1spS 1q ¡ p1� δqmpS 1q{ min
uPrr�1s

puq ¤ pr � 1q � p � e�αhpδq

and hence

P pMrrspSlargeq ¡ p1� δqmpSlargeq{min
uPrrs

puq ¤ pr � 1q � p � e�αhpδq.

Since mpSq � mpSsmallq �mpSlargeq and MrrspSq �MrrspSsmallq �MrrspSlargeq,

P pMrrspSq ¡ p1� δqmpSq{min
uPrrs

puqq ¤ p � e�αhpδq � pr � 1q � e�αhpδq � r � p � e�αhpδq
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as required.

HyperCube Partition with Promise

The following theorem extends Theorem A.2.6 to the case when we have a promise on the

degrees in the bag (or set) S.

Theorem A.2.7. Let S be a bag of tuples of rnsr, and suppose that for every U-tuple J we

have dJpSq ¤ m
α|U |pU

where α ¡ 0. Consider a hypercube hash-partition of S into p bins.

Then, for any δ ¥ 0:

P
�

maximum size of any bin ¡ p1� δqrmpSq
p



¤fpp, r, αq � e�α�hpδq

where the bin refers to the HyperCube partition of S using shares p1, . . . , pr and

fpp, r, αq � 2p
ŗ

j�1

¹
uPrj�1s

pα � 1{puq ¤ 2p
pα � εqr � 1

α � ε� 1
, (A.2)

where ε � 1{minuPrr�1s pu.

We will think of r as a constant, pu as being relatively large, and α as logOp1q p.

Proof. We prove the theorem by induction on r. The base case r � 1 follows immediately

from Theorem A.2.1 since an empty product evaluates to 1 and hence fpp, 1, αq � 2p.

Suppose that r ¡ 1. There is one bin for each r-tuple in rp1s � � � � � rprs. We analyze

cases based on the value b P rprs. Define

SrÑb �
¤

iPrns:hrpiq�b

σr ÞÑipSq and S 1pbq � Πrr�1spSrÑbq

Here r ÞÑ i denotes the tuple piq. SrÑb is a random variable depending on the choice of the

hash function hr that represents the bag of tuples sent to bins whose first projection is b.
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S 1pbq is essentially the same bag where we drop the last coordinate, which, strictly speaking,

we need to do to apply induction. Then mpS 1pbqq � mpSrÑbq.
We will handle the bins corresponding to each value of b separately via induction. How-

ever, in order to do this we need to argue that the recursive version of the promise on

coordinates holds for every U � rr� 1s with S 1pbq and m1 � p1� δqmpSq{pr instead of S and

m. More precisely, we need to argue that, with high probability, for every U � rr � 1s and

every U-tuple J ,

dJpS 1pbqq ¤ m1

α|U |pU
� p1� δq m

α|U |pUpr
(A.3)

Fix a subset U � rr � 1s. The case for U � H is precisely the bound for the size

mpS 1pbqq of S 1pbq. Since the promise of the theorem statement with U � tru implies that

dtrupSq ¤ m{pαprq, by Theorem A.2.1 we have that P pmpS 1pbqq ¡ m1q ¤ e�αhpδq.

Assume next that U � H. Observe that dJpS 1pbqq is precisely the number of tuples

of S consistent with pJ, iq such that hrpiq � b. Using Theorem A.2.4, we upper bound

the probability that there is some U -tuple J such that (A.3) fails. Let kpUq � α|U |pU .

For each fixed pJ, iq, the promise for coordinates U Y tru implies that there are at most

m
α|U |�1pUpr

� m
αprkpUq

tuples in S consistent with pJ, iq. Further, the promise for coordinates

U implies that there are at most m
α|U |pU

� m
kpUq

tuples in S consistent with J . For each such

J define vector wpJq by letting w
pJq
i be the number of tuples consistent with pJ, iq. Thus

||wpJq||8 ¤ m
αprkpUq

for all J and ||wpJq||1 ¤ m
kpUq

for all J . Finally note that since there are

m � mpSq tuples in S,
°
J ||wpJq||1 ¤ m. We therefore we can apply Theorem A.2.4 with

k � kpUq, m1 � m{kpUq and m8 � m1{pαprq to say that the probability that there is some

U -tuple J such that dJpS 1pbqq ¡ p1� δqm1{p1 � p1� δqm{pprkpUqq is at most 2kpUq � e�αhpδq.
For a fixed b, we now use a union bound over the possible sets U � rr � 1s to obtain a

total probability that (A.3) fails for some set U and some U -tuple J of at most

2
¸

U�rr�1s

α|U |pU � e�αhpδq � 2
¹

uPrr�1s

p1� αpuq � e�αhpδq
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� 2pp{prq
¹

uPrr�1s

pα � 1{puq � e�αhpδq

If mpS 1pbqq ¤ m1 and (A.3) holds for all U � rr � 1s and U -tuples J , then we apply

the induction hypothesis (A.2) to derive that the probability that some bin that has b in

its last coordinate has more than p1 � δqr�1m1{pp{prq � p1 � δqrm{p tuples is at most

fpp{pr, r � 1, αq � e�αhpδq.
Since there are pr choices for b, we obtain a total failure probability at most g � e�αhpδq

where

g � pr

�
�2prr�1s

¹
uPrr�1s

pα � 1{puq � fpp{pr, r � 1, αq
�


� 2p
¹

uPrr�1s

pα � 1{puq � pr fpp{pr, r � 1, αq

� 2p
¹

uPrr�1s

pα � 1{puq � prp2p{prq
r�1̧

j�1

¹
uPrj�1s

pα � 1{puq

� 2p
ŗ

j�1

¹
uPrj�1s

pα � 1{puq

� fpp, r, αq

The final bound uses geometric series sum upper bound.
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